Abstract
In this work, a new fuzzy inference system type-1 is presented which predicts each of the classes to which each weight belongs, in this way the replacement of the Softmax activation function that it used in the classification layer, which is responsible for predicting the percentage of membership of each of the last weights of the network within the classification layer of a convolutional neural network. The neural network has been trained with different epochs from 10 to 60 training epochs, showing results not as similar as when using the classical Softmax function inside the classifier layer of the network. This network has a depth of 2 convolution layers, 2 pooling layers and 1 classification layer, in this last layer is where the proposed fuzzy inference system is implemented for the replacement of the Softmax that is in charge of predicting a percentage which will pass to the classification. Applied to a sample of 3 classes from the ORL database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Weller, A., Bischof, G.N., Schlueter, P., Richter, N., Dronse, J., Onur, O., Neumaier, B., Kukolja, J., Langen, K.J., Fink, G., unoth, A.: Finding New Communities: A Principle of Neuronal Network Reorganization in Alzheimer’s Disease. Brain Connect, 11(3), 225–238 (2021). https://doi.org/10.1089/brain.2020.0889.
Miramontes, I., Melin, P.: Interval Type-2 Fuzzy Approach for Dynamic Parameter Adaptation in the Bird Swarm Algorithm for the Optimization of Fuzzy Medical Classifier. Axioms 11(9), 485 (2022). https://doi.org/10.3390/axioms11090485
Dichgans, J., Kallwies, J., Wuensche, H.-J.: Robust Vehicle Tracking with Monocular Vision using Convolutional Neuronal Networks. In: 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), IEEE, pp. 297–302 (2020). https://doi.org/10.1109/MFI49285.2020.9235213.
Varela-Santos, S., Melin, P.: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images. Expert Syst. Appl. 168, 114361 (2021). https://doi.org/10.1016/j.eswa.2020.114361
Naim, S., Chaibi, H., Abdessamad, E.R., Saadane, R., Chehri, A.: A Hybrid Automatic Facial Expression Recognition Based on Convolutional Neuronal Networks and Support Vector Machines Techniques. pp. 27–39 (2022). https://doi.org/10.1007/978-981-19-3455-1_3
Varela-Santos, S., Melin, P.: A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks. Inf Sci (N Y) 545, 403–414 (2021). https://doi.org/10.1016/j.ins.2020.09.041
S. Mehra, G. Raut, R. Das Purkayastha, S. K. Vishvakarma, and A. Biasizzo, “An Empirical Evaluation of Enhanced Performance Softmax Function in Deep Learning,” IEEE Access, vol. 11, pp. 34912–34924, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3265327.
Shoba, V.B.T., Sam, I.S.: Adaptive deep feature learning based Softmax regressive classification for aging facial recognition. Multimed Tools Appl 82(15), 22343–22371 (2023). https://doi.org/10.1007/s11042-022-14129-8
Zhang, Y., Peng, L., Quan, L., Zhang, Y., Zheng, S., Chen, H.: High-Precision Method and Architecture for Base-2 Softmax Function in DNN Training. IEEE Trans. Circuits Syst. I Regul. Pap.Regul. Pap. 70(8), 3268–3279 (2023). https://doi.org/10.1109/TCSI.2023.3277247
Lee, J., Wang, Y., Cho, S.: Angular Margin-Mining Softmax Loss for Face Recognition. IEEE Access 10, 43071–43080 (2022). https://doi.org/10.1109/ACCESS.2022.3168310
Asghar, S., et al.: Water Classification Using Convolutional Neural Network. IEEE Access 11, 78601–78612 (2023). https://doi.org/10.1109/ACCESS.2023.3298061
Kodipalli, A., Devi, S.V., Dasar, S., Ismail, T.: A novel variant of deep convolutional neural network for classification of ovarian tumors using CT images. Comput. Electr. Eng.. Electr. Eng. 109, 108758 (2023). https://doi.org/10.1016/j.compeleceng.2023.108758
A. T. Kabakus, A novel robust convolutional neural network for uniform resource locator classification from the view of cyber security. Concurr. Comput. Pract. Exper. 35 (2023). https://doi.org/10.1002/cpe.7517
Elhani, D., Megherbi, A.C., Zitouni, A., Dornaika, F., Sbaa, S., Taleb-Ahmed, A.: Optimizing convolutional neural networks architecture using a modified particle swarm optimization for image classification. Expert Syst. Appl. 229, 120411 (2023). https://doi.org/10.1016/j.eswa.2023.120411
Lin, C.-J., Yang, T.-Y.: A Fusion-Based Convolutional Fuzzy Neural Network for Lung Cancer Classification. Int. J. Fuzzy Syst. 25(2), 451–467 (2023). https://doi.org/10.1007/s40815-022-01399-5
Büyükarıkan, B., Ülker, E.: Convolutional neural network-based apple images classification and image quality measurement by light colors using the color-balancing approach. Multimed Syst 29(3), 1651–1661 (2023). https://doi.org/10.1007/s00530-023-01084-z
Kumar, A., Patel, V.K.: Classification and identification of disease in potato leaf using hierarchical based deep learning convolutional neural network. Multimed Tools Appl 82(20), 31101–31127 (2023). https://doi.org/10.1007/s11042-023-14663-z
LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Handwritten digit recognition with a back-propagation network. Neural networks, current applications Chapman Hall/CRC Publishers (1992)
LeCun, Y. B. Y.: Convolution Networks for Images, Speech, and Time-Series. Igarss 2014, vol. 1, pp. 1–5 (1998)
Maida, A.S.: Cognitive Computing and Neural Networks. pp. 39–78 (2016). https://doi.org/10.1016/bs.host.2016.07.011
Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox, Transactions on computational science I, 104–114. Lecture Notes in Computer Science, vol 4750. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79299-4_5
Melin, P., Castillo, O.: A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks. Int. J. Gen. Syst. 33(2–3), 289–304 (2004)
Castillo, O., Melin, P.: A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems, 1998 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1998) Proceedings. Volume 2, 1182–1187 (1998)
Castillo, O., Melin, P.: Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Appl. Soft Comput.Comput. 3(4), 363–378 (2003)
Tai, K., El-Sayed, A.-R., Biglarbegian, M., Gonzalez, C.I., Castillo, O., Mahmud, S.: Review of Recent Type-2 Fuzzy Controller Applications, Algorithms, 9(2). 39 (2016)
Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: IEEE International Conference on Fuzzy Systems, pp. 2114–2119 (2009)
Valdez, F., Vazquez, J.C., Melin, P., Castillo, O.: Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. Comput. 52, 1070–1083 (2017)
Sanchez, D., Melin, P., Castillo, O.: A grey wolf optimizer for modular granular neural networks for human recognition. Computational intelligence and neuroscience (2017). https://doi.org/10.1155/2017/4180510
Melin, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms. Eng. Lett. 13(2), 108–116 (2006)
Acknowledgements
We appreciate our sponsor CONAHCYT and the Tijuana Institute of Technology for the financial support provided in this work with the scholarship number 816488.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Poma, Y., Melin, P. (2024). Prediction Using a Fuzzy Inference System in the Classification Layer of a Convolutional Neural Network Replacing the Softmax Function. In: Castillo, O., Melin, P. (eds) New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics. Studies in Computational Intelligence, vol 1149. Springer, Cham. https://doi.org/10.1007/978-3-031-55684-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-55684-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55683-8
Online ISBN: 978-3-031-55684-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)