Nothing Special   »   [go: up one dir, main page]

Skip to main content

Prediction Using a Fuzzy Inference System in the Classification Layer of a Convolutional Neural Network Replacing the Softmax Function

  • Chapter
  • First Online:
New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1149))

  • 119 Accesses

Abstract

In this work, a new fuzzy inference system type-1 is presented which predicts each of the classes to which each weight belongs, in this way the replacement of the Softmax activation function that it used in the classification layer, which is responsible for predicting the percentage of membership of each of the last weights of the network within the classification layer of a convolutional neural network. The neural network has been trained with different epochs from 10 to 60 training epochs, showing results not as similar as when using the classical Softmax function inside the classifier layer of the network. This network has a depth of 2 convolution layers, 2 pooling layers and 1 classification layer, in this last layer is where the proposed fuzzy inference system is implemented for the replacement of the Softmax that is in charge of predicting a percentage which will pass to the classification. Applied to a sample of 3 classes from the ORL database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weller, A., Bischof, G.N., Schlueter, P., Richter, N., Dronse, J., Onur, O., Neumaier, B., Kukolja, J., Langen, K.J., Fink, G., unoth, A.: Finding New Communities: A Principle of Neuronal Network Reorganization in Alzheimer’s Disease. Brain Connect, 11(3), 225–238 (2021). https://doi.org/10.1089/brain.2020.0889.

  2. Miramontes, I., Melin, P.: Interval Type-2 Fuzzy Approach for Dynamic Parameter Adaptation in the Bird Swarm Algorithm for the Optimization of Fuzzy Medical Classifier. Axioms 11(9), 485 (2022). https://doi.org/10.3390/axioms11090485

    Article  Google Scholar 

  3. Dichgans, J., Kallwies, J., Wuensche, H.-J.: Robust Vehicle Tracking with Monocular Vision using Convolutional Neuronal Networks. In: 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), IEEE, pp. 297–302 (2020). https://doi.org/10.1109/MFI49285.2020.9235213.

  4. Varela-Santos, S., Melin, P.: A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images. Expert Syst. Appl. 168, 114361 (2021). https://doi.org/10.1016/j.eswa.2020.114361

    Article  Google Scholar 

  5. Naim, S., Chaibi, H., Abdessamad, E.R., Saadane, R., Chehri, A.: A Hybrid Automatic Facial Expression Recognition Based on Convolutional Neuronal Networks and Support Vector Machines Techniques. pp. 27–39 (2022). https://doi.org/10.1007/978-981-19-3455-1_3

  6. Varela-Santos, S., Melin, P.: A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks. Inf Sci (N Y) 545, 403–414 (2021). https://doi.org/10.1016/j.ins.2020.09.041

    Article  MathSciNet  Google Scholar 

  7. S. Mehra, G. Raut, R. Das Purkayastha, S. K. Vishvakarma, and A. Biasizzo, “An Empirical Evaluation of Enhanced Performance Softmax Function in Deep Learning,” IEEE Access, vol. 11, pp. 34912–34924, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3265327.

  8. Shoba, V.B.T., Sam, I.S.: Adaptive deep feature learning based Softmax regressive classification for aging facial recognition. Multimed Tools Appl 82(15), 22343–22371 (2023). https://doi.org/10.1007/s11042-022-14129-8

    Article  Google Scholar 

  9. Zhang, Y., Peng, L., Quan, L., Zhang, Y., Zheng, S., Chen, H.: High-Precision Method and Architecture for Base-2 Softmax Function in DNN Training. IEEE Trans. Circuits Syst. I Regul. Pap.Regul. Pap. 70(8), 3268–3279 (2023). https://doi.org/10.1109/TCSI.2023.3277247

    Article  Google Scholar 

  10. Lee, J., Wang, Y., Cho, S.: Angular Margin-Mining Softmax Loss for Face Recognition. IEEE Access 10, 43071–43080 (2022). https://doi.org/10.1109/ACCESS.2022.3168310

    Article  Google Scholar 

  11. Asghar, S., et al.: Water Classification Using Convolutional Neural Network. IEEE Access 11, 78601–78612 (2023). https://doi.org/10.1109/ACCESS.2023.3298061

    Article  Google Scholar 

  12. Kodipalli, A., Devi, S.V., Dasar, S., Ismail, T.: A novel variant of deep convolutional neural network for classification of ovarian tumors using CT images. Comput. Electr. Eng.. Electr. Eng. 109, 108758 (2023). https://doi.org/10.1016/j.compeleceng.2023.108758

    Article  Google Scholar 

  13. A. T. Kabakus, A novel robust convolutional neural network for uniform resource locator classification from the view of cyber security. Concurr. Comput. Pract. Exper. 35 (2023). https://doi.org/10.1002/cpe.7517

  14. Elhani, D., Megherbi, A.C., Zitouni, A., Dornaika, F., Sbaa, S., Taleb-Ahmed, A.: Optimizing convolutional neural networks architecture using a modified particle swarm optimization for image classification. Expert Syst. Appl. 229, 120411 (2023). https://doi.org/10.1016/j.eswa.2023.120411

    Article  Google Scholar 

  15. Lin, C.-J., Yang, T.-Y.: A Fusion-Based Convolutional Fuzzy Neural Network for Lung Cancer Classification. Int. J. Fuzzy Syst. 25(2), 451–467 (2023). https://doi.org/10.1007/s40815-022-01399-5

    Article  MathSciNet  Google Scholar 

  16. Büyükarıkan, B., Ülker, E.: Convolutional neural network-based apple images classification and image quality measurement by light colors using the color-balancing approach. Multimed Syst 29(3), 1651–1661 (2023). https://doi.org/10.1007/s00530-023-01084-z

    Article  Google Scholar 

  17. Kumar, A., Patel, V.K.: Classification and identification of disease in potato leaf using hierarchical based deep learning convolutional neural network. Multimed Tools Appl 82(20), 31101–31127 (2023). https://doi.org/10.1007/s11042-023-14663-z

    Article  Google Scholar 

  18. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Handwritten digit recognition with a back-propagation network. Neural networks, current applications Chapman Hall/CRC Publishers (1992)

    Google Scholar 

  19. LeCun, Y. B. Y.: Convolution Networks for Images, Speech, and Time-Series. Igarss 2014, vol. 1, pp. 1–5 (1998)

    Google Scholar 

  20. Maida, A.S.: Cognitive Computing and Neural Networks. pp. 39–78 (2016). https://doi.org/10.1016/bs.host.2016.07.011

  21. Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A.: Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox, Transactions on computational science I, 104–114. Lecture Notes in Computer Science, vol 4750. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79299-4_5

  22. Melin, P., Castillo, O.: A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks. Int. J. Gen. Syst. 33(2–3), 289–304 (2004)

    Article  Google Scholar 

  23. Castillo, O., Melin, P.: A new fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems, 1998 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1998) Proceedings. Volume 2, 1182–1187 (1998)

    Google Scholar 

  24. Castillo, O., Melin, P.: Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Appl. Soft Comput.Comput. 3(4), 363–378 (2003)

    Article  Google Scholar 

  25. Tai, K., El-Sayed, A.-R., Biglarbegian, M., Gonzalez, C.I., Castillo, O., Mahmud, S.: Review of Recent Type-2 Fuzzy Controller Applications, Algorithms, 9(2). 39 (2016)

    Google Scholar 

  26. Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: IEEE International Conference on Fuzzy Systems, pp. 2114–2119 (2009)

    Google Scholar 

  27. Valdez, F., Vazquez, J.C., Melin, P., Castillo, O.: Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. Comput. 52, 1070–1083 (2017)

    Article  Google Scholar 

  28. Sanchez, D., Melin, P., Castillo, O.: A grey wolf optimizer for modular granular neural networks for human recognition. Computational intelligence and neuroscience (2017). https://doi.org/10.1155/2017/4180510

  29. Melin, P., Urias, J., Solano, D., Soto, M., Lopez, M., Castillo, O.: Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms. Eng. Lett. 13(2), 108–116 (2006)

    Google Scholar 

Download references

Acknowledgements

We appreciate our sponsor CONAHCYT and the Tijuana Institute of Technology for the financial support provided in this work with the scholarship number 816488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poma, Y., Melin, P. (2024). Prediction Using a Fuzzy Inference System in the Classification Layer of a Convolutional Neural Network Replacing the Softmax Function. In: Castillo, O., Melin, P. (eds) New Horizons for Fuzzy Logic, Neural Networks and Metaheuristics. Studies in Computational Intelligence, vol 1149. Springer, Cham. https://doi.org/10.1007/978-3-031-55684-5_9

Download citation

Publish with us

Policies and ethics