Nothing Special   »   [go: up one dir, main page]

Skip to main content

Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic Toolbox

  • Chapter
Transactions on Computational Science I

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 4750))

Abstract

This paper presents the development and design of a graphical user interface and a command line programming Toolbox for construction, edition and simulation of Interval Type-2 Fuzzy Inference Systems. The Interval Type-2 Fuzzy Logic System (IT2FLS) Toolbox, is an environment for interval type-2 fuzzy logic inference system development. Tools that cover the different phases of the fuzzy system design process, from the initial description phase, to the final implementation phase, constitute the Toolbox. The Toolbox’s best qualities are the capacity to develop complex systems and the flexibility that allows the user to extend the availability of functions for working with the use of type-2 fuzzy operators, linguistic variables, interval type-2 membership functions, defuzzification methods and the evaluation of Interval Type-2 Fuzzy Inference Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics 3(1), 28–44 (1973)

    MATH  MathSciNet  Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, Parts 1, 2, and 3. Information Sciences 9, 43–80, 8, 199–249, 8, 301–357 (1975)

    Google Scholar 

  4. Zadeh, L.A.: Fuzzy Logic. Computer 1(4), 83–93 (1988)

    Article  MathSciNet  Google Scholar 

  5. Zadeh, L.A.: Knowledge representation in fuzzy logic. IEEE Transactions on Knowledge and Data Engineering 1, 89–100 (1989)

    Article  Google Scholar 

  6. Karnik, N.N., Mendel, J.M.: An Introduction to Type-2 Fuzzy Logic Systems. Univ. of Southern Calif, Los Angeles (1998b)

    Google Scholar 

  7. Zadeh, L.: Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems 2, 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  8. Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: Theory and design. IEEE Transactions Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  9. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, NJ (2001)

    MATH  Google Scholar 

  10. Mizumoto, M., Tanaka, K.: Some Properties of Fuzzy Sets of Type-2. Information and Control 31, 312–340 (1976)

    Article  MathSciNet  Google Scholar 

  11. Yager, R.R.: On the Implication Operator in Fuzzy logic. Information Sciences 31, 141–164 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yager, R.: On a general class of fuzzy connectives. Fuzzy Sets and Systems 4, 235–242 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Castillo, Melin: A New Method for Adaptive control of Non-Linear Plants using Type-2 Fuzzy Logic and Neural Networks. International Journal General Systems 33(2), 289–304

    Google Scholar 

  14. Castro, J.R.: Hybrid Intelligent Architecture Development for Time Series Forecasting. Masters Degree Thesis. Tijuana Institute of Technology (December 2005)

    Google Scholar 

  15. Castro, J.R.: Interval Type-2 Fuzzy Logic Toolbox. In: Proceedings of International Seminar on Computational Intelligence, pp.100–108. Tijuana Institute of Technology (October 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marina L. Gavrilova C. J. Kenneth Tan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castro, J.R., Castillo, O., Melin, P., Rodríguez-Díaz, A. (2008). Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic Toolbox. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science I. Lecture Notes in Computer Science, vol 4750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79299-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79299-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79298-7

  • Online ISBN: 978-3-540-79299-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics