Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generalization of Machine-Learning Adaptation in Ensemble-Based Self-adaptive Systems

  • Conference paper
  • First Online:
Software Architecture. ECSA 2022 Tracks and Workshops (ECSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13928))

Included in the following conference series:

  • 579 Accesses

Abstract

Smart self-adaptive systems are nowadays commonly employed almost in any application domain. Within them, groups of robots, autonomous vehicles, drones, and similar automatons dynamically cooperate to achieve a common goal. An approach to model such dynamic cooperation is via autonomic component ensembles, which are dynamically formed groups of components. Forming ensembles is described via a set of constraints (e.g., form an ensemble of three drones closest to a target that have sufficient battery level to reach the target and stay there). Evaluating these constraints by traditional means (such as a SAT solver) is computationally demanding and does not scale for large systems. This paper proposes an approach for solving ensemble formations based on machine learning which may be relatively faster. The method trains the model on a small instance of the system governed by a computationally demanding algorithm and then adapts it for large instances thanks to the generalization properties of the machine learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ecsel.eu/projects/afarcloud.

  2. 2.

    https://github.com/pacovsky/ML-SAS-gaddapt-replication-package.git.

References

  1. jRESP: Java Runtime Environment for SCEL Programs. http://jresp.sourceforge.net/. Accessed 02 Jan 2023

  2. Alrahman, Y.A., De Nicola, R., Loreti, M.: Programming interactions in collective adaptive systems by relying on attribute-based communication. Sci. Comput. Program. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428

    Article  Google Scholar 

  3. Bureš, T., Gerostathopoulos, I., Hnětynka, P., Pacovský, J.: Forming ensembles at runtime: a machine learning approach. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 440–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_26

    Chapter  Google Scholar 

  4. Bures, T., et al.: A language and framework for dynamic component ensembles in smart systems. Int. J. Softw. Tools Technol. Transfer 22(4), 497–509 (2020). https://doi.org/10.1007/s10009-020-00558-z

    Article  Google Scholar 

  5. Cámara, J., Muccini, H., Vaidhyanathan, K.: Quantitative verification-aided machine learning: a tandem approach for architecting self-adaptive IoT systems. In: Proceedings of ICSA 2021, Salvador, Brazil, pp. 11–22. IEEE, March 2020. https://doi.org/10.1109/ICSA47634.2020.00010

  6. De Nicola, R., Duong, T., Loreti, M.: ABEL - a domain specific framework for programming with attribute-based communication. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 111–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7_7

    Chapter  Google Scholar 

  7. Gabor, T., et al.: The scenario coevolution paradigm: adaptive quality assurance for adaptive systems. Int. J. Softw. Tools Technol. Transfer 22(4), 457–476 (2020). https://doi.org/10.1007/s10009-020-00560-5

    Article  Google Scholar 

  8. Gheibi, O., Weyns, D., Quin, F.: Applying machine learning in self-adaptive systems: a systematic literature review. ACM Trans. Auton. Adapt. Syst. 15(3), 9:1–9:37 (2021). https://doi.org/10.1145/3469440

  9. Gheibi, O., Weyns, D., Quin, F.: On the impact of applying machine learning in the decision-making of self-adaptive systems. In: Proceedings of SEAMS 2021, Madrid, Spain, pp. 104–110. IEEE, May 2021. https://doi.org/10.1109/SEAMS51251.2021.00023

  10. Bjørner, D.: Domain endurants. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 1–34. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-2_1

    Chapter  MATH  Google Scholar 

  11. Muccini, H., Vaidhyanathan, K.: A machine learning-driven approach for proactive decision making in adaptive architectures. In: Companion Proceedings of ICSA 2019, Hamburg, Germany, pp. 242–245 (2019). https://doi.org/10.1109/ICSA-C.2019.00050

  12. De Nicola, R., et al.: The SCEL language: design, implementation, verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9_1

    Chapter  Google Scholar 

  13. Saputri, T.R.D., Lee, S.W.: The application of machine learning in self-adaptive systems: a systematic literature review. IEEE Access 8, 205948–205967 (2020). https://doi.org/10.1109/ACCESS.2020.3036037

    Article  Google Scholar 

  14. Van Der Donckt, J., Weyns, D., Iftikhar, M.U., Buttar, S.S.: Effective decision making in self-adaptive systems using cost-benefit analysis at runtime and online learning of adaptation spaces. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2018. CCIS, vol. 1023, pp. 373–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22559-9_17

    Chapter  Google Scholar 

  15. Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels, S.: Applying deep learning to reduce large adaptation spaces of self-adaptive systems with multiple types of goals. In: Proceedings of SEAMS 2020, Seoul, South Korea, pp. 20–30. ACM (2020). https://doi.org/10.1145/3387939.3391605

Download references

Acknowledgment

This work has been partially supported by the Czech Science Foundation project 20-24814J, and partially by Charles University institutional funding SVV 260698/2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hnětynka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pacovský, J., Hnětynka, P., Kruliš, M. (2023). Generalization of Machine-Learning Adaptation in Ensemble-Based Self-adaptive Systems. In: Batista, T., Bureš, T., Raibulet, C., Muccini, H. (eds) Software Architecture. ECSA 2022 Tracks and Workshops. ECSA 2022. Lecture Notes in Computer Science, vol 13928. Springer, Cham. https://doi.org/10.1007/978-3-031-36889-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36889-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36888-2

  • Online ISBN: 978-3-031-36889-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics