Nothing Special   »   [go: up one dir, main page]

Skip to main content

Introducing Estimators—Abstraction for Easy ML Employment in Self-adaptive Architectures

  • Conference paper
  • First Online:
Software Architecture. ECSA 2022 Tracks and Workshops (ECSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13928))

Included in the following conference series:

  • 600 Accesses

Abstract

Machine learning (ML) has shown its potential in extending the ability of self-adaptive systems to deal with unknowns. To date, there have been several approaches to applying ML in different stages of the adaptation loop. However, the systematic inclusion of ML in the architecture of self-adaptive applications is still an objective that has not been very elaborated yet. In this paper, we show one approach to address this by introducing the concept of estimators in an architecture of a self-adaptive system. The estimator serves to provide predictions on future and currently unobservable values via ML. As a proof of concept, we show how estimators are employed in ML-DEECo—a dedicated ML-enabled component model for adaptive component architectures. It is based on our DEECo component model, which features autonomic components and dynamic component coalitions (ensembles). It makes it possible to specify ML-based adaptation already at the level of the component-based application architecture (i.e., at the model level) without having to explicitly deal with the intricacies of the adaptation loop. As part of the evaluation, we provide an open-source implementation of ML-DEECo run-time framework in Python.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ecsel.eu/projects/afarcloud.

References

  1. jRESP: Java Runtime Environment for SCEL Programs. https://jresp.sourceforge.net/. Accessed 30 Mar 2023

  2. Replication package. https://github.com/smartarch/ML-DEECo-replication-package

  3. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collective adaptive systems by relying on attribute-based communication. Sci. Comput. Program. 192, 102428 (2020)

    Article  Google Scholar 

  4. Aguzzi, G., Casadei, R., Maltoni, N., Pianini, D., Viroli, M.: ScaFi-Web: a web-based application for field-based coordination programming. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 285–299. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2_18

    Chapter  Google Scholar 

  5. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_1

    Chapter  Google Scholar 

  6. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_38

    Chapter  Google Scholar 

  7. Bliudze, S., Sifakis, J.: The algebra of connectors-structuring interaction in BIP. IEEE Trans. Comput. 57(10) (2008)

    Google Scholar 

  8. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECO: an ensemble-based component system. In: Proceedings of CBSE 2013, Vancouver, Canada (2013)

    Google Scholar 

  9. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: Gossiping components for cyber-physical systems. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014. LNCS, vol. 8627, pp. 250–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09970-5_23

    Chapter  Google Scholar 

  10. Bures, T., et al.: A language and framework for dynamic component ensembles in smart systems. Int. J. Softw. Tools Technol. Transfer 22(4), 497–509 (2020)

    Article  Google Scholar 

  11. Bures, T., Hnetynka, P., Kofron, J., Al Ali, R., Skoda, D.: Statistical approach to architecture modes in smart cyber physical systems. In: Proceedings of WICSA 2016, Venice, Italy (2016)

    Google Scholar 

  12. Bures, T., Plasil, F., Kit, M., Tuma, P., Hoch, N.: Software abstractions for component interaction in the internet of things. Computer 49(12), 50–59 (2016)

    Article  Google Scholar 

  13. Chehida, S., Baouya, A., Bensalem, S.: Component-based approach combining UML and BIP for rigorous system design. In: Salaün, G., Wijs, A. (eds.) FACS 2021. LNCS, vol. 13077, pp. 27–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90636-8_2

    Chapter  Google Scholar 

  14. Cámara, J., Muccini, H., Vaidhyanathan, K.: Quantitative verification-aided machine learning: a tandem approach for architecting self-adaptive IoT systems. In: Proceedings of ICSA 2021, Salvador, Brazil (2020)

    Google Scholar 

  15. Crnkovic, I., Larsson, M. (eds.): Building Reliable Component-Based Software Systems. Artech House, Boston (2002)

    MATH  Google Scholar 

  16. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.: A classification framework for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615 (2011)

    Article  Google Scholar 

  17. De Nicola, R., Duong, T., Loreti, M.: ABEL - a domain specific framework for programming with attribute-based communication. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 111–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7_7

    Chapter  Google Scholar 

  18. De Nicola, R., Duong, T., Loreti, M.: Provably correct implementation of the AbC calculus. Sci. Comput. Program. 202, 102567 (2021)

    Article  Google Scholar 

  19. De Nicola, R., Maggi, A., Sifakis, J.: The DReAM framework for dynamic reconfigurable architecture modelling: theory and applications. Int. J. Softw. Tools Technol. Transfer 22(4), 437–455 (2020)

    Article  Google Scholar 

  20. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable systems. Int. J. Softw. Tools Technol. Transfer 23(5), 701–719 (2021). https://doi.org/10.1007/s10009-020-00596-7

    Article  Google Scholar 

  21. Gabor, T., et al.: The scenario coevolution paradigm: adaptive quality assurance for adaptive systems. Int. J. Softw. Tools Technol. Transfer 22(4), 457–476 (2020). https://doi.org/10.1007/s10009-020-00560-5

    Article  Google Scholar 

  22. Gheibi, O., Weyns, D., Quin, F.: Applying machine learning in self-adaptive systems: a systematic literature review. ACM Trans. Auton. Adapt. Syst. 15(3), 1–37 (2021)

    Article  Google Scholar 

  23. Gheibi, O., Weyns, D., Quin, F.: On the impact of applying machine learning in the decision-making of self-adaptive systems. In: Proceedings of SEAMS 2021, Madrid, Spain (2021)

    Google Scholar 

  24. Grohmann, J., et al.: SARDE: a framework for continuous and self-adaptive resource demand estimation. ACM Trans. Auton. Adapt. Syst. 15(2), 1–31 (2021)

    Article  Google Scholar 

  25. Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena approach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-2_18

    Chapter  Google Scholar 

  26. Hennicker, R., Wirsing, M.: A dynamic logic for systems with predicate-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 224–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_14

    Chapter  Google Scholar 

  27. Hnetynka, P., Bures, T., Gerostathopoulos, I., Pacovsky, J.: Using component ensembles for modeling autonomic component collaboration in smart farming. In: Proceedings of SEAMS 2020, Seoul, Korea (2020)

    Google Scholar 

  28. Krijt, F., Jiracek, Z., Bures, T., Hnetynka, P., Gerostathopoulos, I.: Intelligent ensembles - a declarative group description language and java framework. In: Proceedings of SEAMS 2017, Buenos Aires, Argentina (2017)

    Google Scholar 

  29. Muccini, H., Vaidhyanathan, K.: A machine learning-driven approach for proactive decision making in adaptive architectures. In: Companion Proceedings of ICSA 2019, Hamburg, Germany (2019)

    Google Scholar 

  30. De Nicola, R., et al.: The SCEL language: design, implementation, verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9_1

    Chapter  Google Scholar 

  31. Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive information systems. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 169–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_11

    Chapter  Google Scholar 

  32. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

    Article  Google Scholar 

  33. Saputri, T.R.D., Lee, S.W.: The application of machine learning in self-adaptive systems: a systematic literature review. IEEE Access 8, 205948–205967 (2020)

    Article  Google Scholar 

  34. Shaw, M.: Writing good software engineering research papers. In: Proceedings of ICSE 2003, Portland, OR, USA (2003)

    Google Scholar 

  35. Van Der Donckt, J., Weyns, D., Iftikhar, M.U., Buttar, S.S.: Effective decision making in self-adaptive systems using cost-benefit analysis at runtime and online learning of adaptation spaces. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2018. CCIS, vol. 1023, pp. 373–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22559-9_17

    Chapter  Google Scholar 

  36. Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels, S.: Applying deep learning to reduce large adaptation spaces of self-adaptive systems with multiple types of goals. In: Proceedings of SEAMS 2020, Seoul, South Korea (2020)

    Google Scholar 

  37. Weyns, D., et al.: towards better adaptive systems by combining MAPE, control theory, and machine learning. In: Proceedings of SEAMS 2021, Madrid, Spain (2021)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the Czech Science Foundation project 20-24814J, partially by Charles University institutional funding SVV 260698/2023, and partially by the Charles University Grant Agency project 269723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Hnětynka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdullah, M., Töpfer, M., Bureš, T., Hnětynka, P., Kruliš, M., Plášil, F. (2023). Introducing Estimators—Abstraction for Easy ML Employment in Self-adaptive Architectures. In: Batista, T., Bureš, T., Raibulet, C., Muccini, H. (eds) Software Architecture. ECSA 2022 Tracks and Workshops. ECSA 2022. Lecture Notes in Computer Science, vol 13928. Springer, Cham. https://doi.org/10.1007/978-3-031-36889-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36889-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36888-2

  • Online ISBN: 978-3-031-36889-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics