Abstract
Machine learning (ML) has shown its potential in extending the ability of self-adaptive systems to deal with unknowns. To date, there have been several approaches to applying ML in different stages of the adaptation loop. However, the systematic inclusion of ML in the architecture of self-adaptive applications is still an objective that has not been very elaborated yet. In this paper, we show one approach to address this by introducing the concept of estimators in an architecture of a self-adaptive system. The estimator serves to provide predictions on future and currently unobservable values via ML. As a proof of concept, we show how estimators are employed in ML-DEECo—a dedicated ML-enabled component model for adaptive component architectures. It is based on our DEECo component model, which features autonomic components and dynamic component coalitions (ensembles). It makes it possible to specify ML-based adaptation already at the level of the component-based application architecture (i.e., at the model level) without having to explicitly deal with the intricacies of the adaptation loop. As part of the evaluation, we provide an open-source implementation of ML-DEECo run-time framework in Python.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
jRESP: Java Runtime Environment for SCEL Programs. https://jresp.sourceforge.net/. Accessed 30 Mar 2023
Replication package. https://github.com/smartarch/ML-DEECo-replication-package
Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming interactions in collective adaptive systems by relying on attribute-based communication. Sci. Comput. Program. 192, 102428 (2020)
Aguzzi, G., Casadei, R., Maltoni, N., Pianini, D., Viroli, M.: ScaFi-Web: a web-based application for field-based coordination programming. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 285–299. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2_18
Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_1
Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_38
Bliudze, S., Sifakis, J.: The algebra of connectors-structuring interaction in BIP. IEEE Trans. Comput. 57(10) (2008)
Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECO: an ensemble-based component system. In: Proceedings of CBSE 2013, Vancouver, Canada (2013)
Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: Gossiping components for cyber-physical systems. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014. LNCS, vol. 8627, pp. 250–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09970-5_23
Bures, T., et al.: A language and framework for dynamic component ensembles in smart systems. Int. J. Softw. Tools Technol. Transfer 22(4), 497–509 (2020)
Bures, T., Hnetynka, P., Kofron, J., Al Ali, R., Skoda, D.: Statistical approach to architecture modes in smart cyber physical systems. In: Proceedings of WICSA 2016, Venice, Italy (2016)
Bures, T., Plasil, F., Kit, M., Tuma, P., Hoch, N.: Software abstractions for component interaction in the internet of things. Computer 49(12), 50–59 (2016)
Chehida, S., Baouya, A., Bensalem, S.: Component-based approach combining UML and BIP for rigorous system design. In: Salaün, G., Wijs, A. (eds.) FACS 2021. LNCS, vol. 13077, pp. 27–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90636-8_2
Cámara, J., Muccini, H., Vaidhyanathan, K.: Quantitative verification-aided machine learning: a tandem approach for architecting self-adaptive IoT systems. In: Proceedings of ICSA 2021, Salvador, Brazil (2020)
Crnkovic, I., Larsson, M. (eds.): Building Reliable Component-Based Software Systems. Artech House, Boston (2002)
Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.: A classification framework for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615 (2011)
De Nicola, R., Duong, T., Loreti, M.: ABEL - a domain specific framework for programming with attribute-based communication. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 111–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7_7
De Nicola, R., Duong, T., Loreti, M.: Provably correct implementation of the AbC calculus. Sci. Comput. Program. 202, 102567 (2021)
De Nicola, R., Maggi, A., Sifakis, J.: The DReAM framework for dynamic reconfigurable architecture modelling: theory and applications. Int. J. Softw. Tools Technol. Transfer 22(4), 437–455 (2020)
El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable systems. Int. J. Softw. Tools Technol. Transfer 23(5), 701–719 (2021). https://doi.org/10.1007/s10009-020-00596-7
Gabor, T., et al.: The scenario coevolution paradigm: adaptive quality assurance for adaptive systems. Int. J. Softw. Tools Technol. Transfer 22(4), 457–476 (2020). https://doi.org/10.1007/s10009-020-00560-5
Gheibi, O., Weyns, D., Quin, F.: Applying machine learning in self-adaptive systems: a systematic literature review. ACM Trans. Auton. Adapt. Syst. 15(3), 1–37 (2021)
Gheibi, O., Weyns, D., Quin, F.: On the impact of applying machine learning in the decision-making of self-adaptive systems. In: Proceedings of SEAMS 2021, Madrid, Spain (2021)
Grohmann, J., et al.: SARDE: a framework for continuous and self-adaptive resource demand estimation. ACM Trans. Auton. Adapt. Syst. 15(2), 1–31 (2021)
Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena approach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-2_18
Hennicker, R., Wirsing, M.: A dynamic logic for systems with predicate-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 224–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_14
Hnetynka, P., Bures, T., Gerostathopoulos, I., Pacovsky, J.: Using component ensembles for modeling autonomic component collaboration in smart farming. In: Proceedings of SEAMS 2020, Seoul, Korea (2020)
Krijt, F., Jiracek, Z., Bures, T., Hnetynka, P., Gerostathopoulos, I.: Intelligent ensembles - a declarative group description language and java framework. In: Proceedings of SEAMS 2017, Buenos Aires, Argentina (2017)
Muccini, H., Vaidhyanathan, K.: A machine learning-driven approach for proactive decision making in adaptive architectures. In: Companion Proceedings of ICSA 2019, Hamburg, Germany (2019)
De Nicola, R., et al.: The SCEL language: design, implementation, verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16310-9_1
Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive information systems. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 169–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_11
Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)
Saputri, T.R.D., Lee, S.W.: The application of machine learning in self-adaptive systems: a systematic literature review. IEEE Access 8, 205948–205967 (2020)
Shaw, M.: Writing good software engineering research papers. In: Proceedings of ICSE 2003, Portland, OR, USA (2003)
Van Der Donckt, J., Weyns, D., Iftikhar, M.U., Buttar, S.S.: Effective decision making in self-adaptive systems using cost-benefit analysis at runtime and online learning of adaptation spaces. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2018. CCIS, vol. 1023, pp. 373–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22559-9_17
Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels, S.: Applying deep learning to reduce large adaptation spaces of self-adaptive systems with multiple types of goals. In: Proceedings of SEAMS 2020, Seoul, South Korea (2020)
Weyns, D., et al.: towards better adaptive systems by combining MAPE, control theory, and machine learning. In: Proceedings of SEAMS 2021, Madrid, Spain (2021)
Acknowledgment
This work has been partially supported by the Czech Science Foundation project 20-24814J, partially by Charles University institutional funding SVV 260698/2023, and partially by the Charles University Grant Agency project 269723.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abdullah, M., Töpfer, M., Bureš, T., Hnětynka, P., Kruliš, M., Plášil, F. (2023). Introducing Estimators—Abstraction for Easy ML Employment in Self-adaptive Architectures. In: Batista, T., Bureš, T., Raibulet, C., Muccini, H. (eds) Software Architecture. ECSA 2022 Tracks and Workshops. ECSA 2022. Lecture Notes in Computer Science, vol 13928. Springer, Cham. https://doi.org/10.1007/978-3-031-36889-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-36889-9_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36888-2
Online ISBN: 978-3-031-36889-9
eBook Packages: Computer ScienceComputer Science (R0)