Abstract
Enterprise Architecture offers guidelines for the coherent, model-based design and management of enterprises. EA models provide a layered, integrated, and cohesive representation of the enterprise, enabling communication, analysis, and decision making. With the increasing size of EA models, automated analysis becomes essential. However, advanced model analysis is neither incorporated in current EA methods like ArchiMate nor supported by existing EA tools like Archi. Knowledge Graphs (KGs) can effectively organize and represent knowledge and enable reasoning to utilize this knowledge, e.g., for decision support. This paper introduces a model-based Enterprise Architecture Knowledge Graph (EAKG) construction method and shows how starting from ArchiMate models, an initially derived EAKG can be further enriched by EA-specific and graph characteristics-based knowledge. The introduced EAKG entails new representation and reasoning methods applicable to EA knowledge. As a proof of concept, we present the results of a first Design Science Research Cycle aiming to realize an Archi plugin for the EAKG that enables analysis of EA Smells within ArchiMate models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
https://www.archimatetool.com/, last accessed: 15.08.2022.
- 2.
https://swc-public.pages.rwth-aachen.de/smells/ea-smells/, accessed: 11.05.2022.
- 3.
EAKG Github repository: https://github.com/borkdominik/archi-kganalysis-plugin.
- 4.
Archi plugins: https://www.archimatetool.com/plugins/, accessed 02.05.2022.
References
Ahlemann, F., Stettiner, E., Messerschmidt, M., Legner, C.: Strategic Enterprise Architecture Management: Challenges, Best Practices, and Future Developments. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24223-6
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
Bakhshadeh, M., Morais, A., Caetano, A., Borbinha, J.: Ontology transformation of enterprise architecture models. In: Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R. (eds.) DoCEIS 2014. IAICT, vol. 423, pp. 55–62. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54734-8_7
Barbosa, A., Santana, A., Hacks, S., Stein, N.V.: A taxonomy for enterprise architecture analysis research. In: 21st International Conference on Enterprise Information Systems, vol. 2, pp. 493–504. SciTePress (2019)
Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and enterprise AI: the promise of an enabling technology. In: 35th IEEE International Conference on Data Engineering, pp. 26–37. IEEE (2019)
Bellomarini, L., Sallinger, E., Vahdati, S.: Chapter 2 Knowledge graphs: the layered perspective. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs and Big Data Processing. LNCS, vol. 12072, pp. 20–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7_2
Bernasconi, A., Canakoglu, A., Ceri, S.: From a conceptual model to a knowledge graph for genomic datasets. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 352–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_29
Bork, D., et al.: Requirements engineering for model-based enterprise architecture management with ArchiMate. In: Pergl, R., Babkin, E., Lock, R., Malyzhenkov, P., Merunka, V. (eds.) EOMAS 2018. LNBIP, vol. 332, pp. 16–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00787-4_2
Bork, D., Karagiannis, D., Pittl, B.: A survey of modeling language specification techniques. Inf. Syst. 87, 101425 (2020). https://doi.org/10.1016/j.is.2019.101425
Buckl, S., Matthes, F., Schweda, C.M.: Classifying enterprise architecture analysis approaches. In: Poler, R., van Sinderen, M., Sanchis, R. (eds.) IWEI 2009. LNBIP, vol. 38, pp. 66–79. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04750-3_6
Burgueño, L., Kessentini, M., Wimmer, M., Zschaler, S.: 3rd workshop on artificial intelligence and model-driven engineering. In: International Conference on Model Driven Engineering Languages and Systems Companion, pp. 148–149 (2021)
Buschle, M., Holm, H., Sommestad, T., Ekstedt, M., Shahzad, K.: A tool for automatic enterprise architecture modeling. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 1–15. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29749-6_1
Buschle, M., Johnson, P., Shahzad, K.: The enterprise architecture analysis tool - support for the predictive, probabilistic architecture modeling framework, pp. 3350–3364 (2013)
Caetano, A., et al.: Representation and analysis of enterprise models with semantic techniques: an application to archimate, e3value and business model canvas. Knowl. Inf. Syst. 50(1), 315–346 (2017)
Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)
Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: mapping conceptual schemas to graph databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 430–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_33
Dehmer, M., Emmert-Streib, F., Shi, Y.: Quantitative graph theory: a new branch of graph theory and network science. Inf. Sci. 418–419, 575–580 (2017)
Di Rocco, J., Di Sipio, C., Di Ruscio, D., Nguyen, P.T.: A GNN-based recommender system to assist the specification of metamodels and models. In: International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 70–81 (2021)
Florez, H., Sánchez, M., Villalobos, J.: A catalog of automated analysis methods for enterprise models. Springerplus 5(1), 1–24 (2016). https://doi.org/10.1186/s40064-016-2032-9
Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional, Boston (2018)
Frank, U., Strecker, S., Fettke, P., vom Brocke, J., Becker, J., Sinz, E.J.: The research field “modeling business information systems’’ - current challenges and elements of a future research agenda. Bus. Inf. Syst. Eng. 6(1), 39–43 (2014)
Franke, U., Holschke, O., Buschle, M., Narman, P., Rake-Revelant, J.: It consolidation: an optimization approach. In: International Enterprise Distributed Object Computing Conference Workshops, pp. 21–26 (2010)
Giakoumakis, V., Krob, D., Liberti, L., Roda, F.: Technological architecture evolutions of information systems: trade-off and optimization. Concurr. Eng. 20(2), 127–147 (2012)
Glaser, P.L., Ali, S.J., Sallinger, E., Bork, D.: Exploring enterprise architecture knowledge graphs in Archi: the EAKG toolkit (2022). Under review
Hacks, S., Höfert, H., Salentin, J., Yeong, Y.C., Lichter, H.: Towards the definition of enterprise architecture debts. In: 2019 IEEE 23rd International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 9–16. IEEE (2019)
Hacks, S., Lichter, H.: A probabilistic enterprise architecture model evolution. In: International Enterprise Distributed Object Computing Conference, pp. 51–57 (2018)
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)
Höfferer, P.: Achieving business process model interoperability using metamodels and ontologies. In: Österle, H., Schelp, J., Winter, R. (eds.) European Conference on Information Systems, ECIS 2007, pp. 1620–1631 (2007)
Holschke, O., Närman, P., Flores, W.R., Eriksson, E., Schönherr, M.: Using enterprise architecture models and Bayesian belief networks for failure impact analysis. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 339–350. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01247-1_35
Jonkers, H., Band, I., Quartel, D.: The ArchiSurance case study. The Open Group, pp. 1–32 (2012)
Karagiannis, D., Buchmann, R.A.: Linked open models: extending linked open data with conceptual model information. Inf. Syst. 56, 174–197 (2016)
Lankhorst, M.M.: Enterprise Architecture at Work - Modelling, Communication and Analysis. The Enterprise Engineering Series, 2nd edn. Springer, Heidelberg (2009)
Lantow, B., Jugel, D., Wißotzki, M., Lehmann, B., Zimmermann, O., Sandkuhl, K.: Towards a classification framework for approaches to enterprise architecture analysis. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 335–343. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_25
Maass, W., Storey, V.C.: Pairing conceptual modeling with machine learning. Data Knowl. Eng. 134, 101909 (2021)
Maccormack, A.D., Lagerstrom, R., Baldwin, C.Y.: A methodology for operationalizing enterprise architecture and evaluating enterprise it flexibility. Harvard Business School Working Paper Series# 15-060 (2015)
Medvedev, D., Shani, U., Dori, D.: Gaining insights into conceptual models: a graph-theoretic querying approach. Appl. Sci. 11(2), 765 (2021)
Naranjo, D., Sánchez, M., Villalobos, J.: PRIMROSe: a graph-based approach for enterprise architecture analysis. In: Cordeiro, J., Hammoudi, S., Maciaszek, L., Camp, O., Filipe, J. (eds.) ICEIS 2014. LNBIP, vol. 227, pp. 434–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22348-3_24
Närman, P., Buschle, M., Ekstedt, M.: An enterprise architecture framework for multi-attribute information systems analysis. Softw. Syst. Model. 13(3), 1085–1116 (2012). https://doi.org/10.1007/s10270-012-0288-2
OMG: ArchiMate® 3.1 Specification. The Open Group (2019). https://pubs.opengroup.org/architecture/archimate3-doc/
Pan, J.Z., Vetere, G., Gómez-Pérez, J.M., Wu, H. (eds.): Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-45654-6
Pittl, B., Bork, D.: Modeling digital enterprise ecosystems with ArchiMate: a mobility provision case study. In: ICServ 2017. LNCS, vol. 10371, pp. 178–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61240-9_17
Pittl, B., Fill, H.: Transforming enterprise models to linked data via semantic annotations. In: Schaefer, I., Karagiannis, D., Vogelsang, A., Méndez, D., Seidl, C. (eds.) Modellierung 2018. LNI, pp. 55–70. Gesellschaft für Informatik (2018)
Plataniotis, G., de Kinderen, S., Proper, H.A.: Relating decisions in enterprise architecture using decision design graphs. In: 2013 17th IEEE International Enterprise Distributed Object Computing Conference, pp. 139–146. IEEE (2013)
Reimer, U., Bork, D., Fettke, P., Tropmann-Frick, M.: Preface of the first workshop models in AI. In: Companion Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo Papers, pp. 128–129. CEUR Workshop Proceedings (2020)
Salentin, J., Hacks, S.: Towards a catalog of enterprise architecture smells. In: Gronau, N., Heine, M., Krasnova, H., Poustcchi, K. (eds.) Internationalen Tagung Wirtschaftsinformatik, Community Tracks, pp. 276–290. GITO Verlag (2020)
Santana, A., Fischbach, K., de Moura, H.P.: Enterprise architecture analysis and network thinking: a literature review. In: Bui, T.X., Jr., R.H.S. (eds.) 49th Hawaii International Conference on System Sciences, pp. 4566–4575. IEEE (2016)
Santana, A., Simon, D., Fischbach, K., de Moura, H.: Combining network measures and expert knowledge to analyze enterprise architecture at the component level. In: 2016 IEEE EDOC Conference, pp. 1–10. IEEE (2016)
Simsek, U., et al.: Knowledge graph lifecycle: building and maintaining knowledge graphs (2021)
Smajevic, M., Bork, D.: From conceptual models to knowledge graphs: a generic model transformation platform. In: International Conference on Model Driven Engineering Languages and Systems Companion, pp. 610–614 (2021)
Smajevic, M., Bork, D.: Towards graph-based analysis of enterprise architecture models. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 199–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_17
Smajevic, M., Hacks, S., Bork, D.: Using knowledge graphs to detect enterprise architecture smells. In: Serral, E., Stirna, J., Ralyté, J., Grabis, J. (eds.) PoEM 2021. LNBIP, vol. 432, pp. 48–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91279-6_4
Tong, Q., Zhang, F., Cheng, J.: Construction of RDF (S) from UML class diagrams. J. Comput. Inf. Technol. 22(4), 237–250 (2014)
Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)
Zou, X.: A survey on application of knowledge graph. In: Journal of Physics: Conference Series, vol. 1487, p. 012016. IOP Publishing (2020)
Acknowledgements
This work has been partially funded through the Erasmus+ KA220-HED project “Digital Platform Enterprise” (DEMO) with the project number: 2021-1-RO01-KA220-HED-000027576, the project “Enterprise Architecture Knowledge Graphs" funded by a Career Grant of TU Wien, and the Austrian Research Promotion Agency (FFG) via the Austrian Competence Center for Digital Production (CDP) under the contract number 854187.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Glaser, PL., Ali, S.J., Sallinger, E., Bork, D. (2022). Model-Based Construction of Enterprise Architecture Knowledge Graphs. In: Almeida, J.P.A., Karastoyanova, D., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022. Lecture Notes in Computer Science, vol 13585. Springer, Cham. https://doi.org/10.1007/978-3-031-17604-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-17604-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17603-6
Online ISBN: 978-3-031-17604-3
eBook Packages: Computer ScienceComputer Science (R0)