Abstract
The goal of diffusion-weighted magnetic resonance imaging (DWI) is to infer the structural connectivity of an individual subject’s brain in vivo. To statistically study the variability and differences between normal and abnormal brain connectomes, a mathematical model of the neural connections is required. In this paper, we represent the brain connectome as a Riemannian manifold, which allows us to model neural connections as geodesics. This leads to the challenging problem of estimating a Riemannian metric that is compatible with the DWI data, i.e., a metric such that the geodesic curves represent individual fiber tracts of the connectomics. We reduce this problem to that of solving a highly nonlinear set of partial differential equations (PDEs) and study the applicability of convolutional encoder-decoder neural networks (CEDNNs) for solving this geometrically motivated PDE. Our method achieves excellent performance in the alignment of geodesics with white matter pathways and tackles a long-standing issue in previous geodesic tractography methods: the inability to recover crossing fibers with high fidelity. Code is available at https://github.com/aarentai/Metric-Cnn-3D-IPMI.
H. Dai and S. Joshi were supported by NSF grant DMS-1912030. P. T. Fletcher was supported by NSF grant IIS-2205417. M. Bauer was supported by NSF grants DMS-1912037, DMS-1953244 and by FWF grant FWF-P 35813-N.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)
Behrens, T.E., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Resonance Med. Official J. Int. Soc. Magn. Resonance Med. 50(5), 1077–1088 (2003)
Bihonegn, T., Kaushik, S., Bansal, A., Vojtíšek, L., Slovák, J.: Geodesic fiber tracking in white matter using activation function. Comput. Methods Programs Biomed. 208, 106283 (2021)
Bihonegn, T.T., Bansal, A., Slovák, J., Kaushik, S.: 4th order tensors for multi-fiber resolution and segmentation in white matter. In: 2020 7th International Conference on Biomedical and Bioinformatics Engineering, pp. 36–42 (2020)
Campbell, K.M., Dai, H., Su, Z., Bauer, M., Fletcher, P.T., Joshi, S.C.: Structural connectome atlas construction in the space of Riemannian metrics. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 291–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_23
Cheng, G., Salehian, H., Forder, J.R., Vemuri, B.C.: Tractography from HARDI using an intrinsic unscented kalman filter. IEEE Trans. Med. Imaging 34(1), 298–305 (2014)
Chuang, P.Y., Barba, L.A.: Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. arXiv preprint arXiv:2205.14249 (2022)
Do Carmo, M.P., Flaherty Francis, J.: Riemannian Geometry, vol. 6. Springer, New York (1992). https://doi.org/10.1007/978-0-387-29403-2
Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)
Fletcher, P.T., Tao, R., Jeong, W.-K., Whitaker, R.T.: A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 346–358. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_29
Fuster, A., Haije, T.D., Tristán-Vega, A., Plantinga, B., Westin, C.F., Florack, L.: Adjugate diffusion tensors for geodesic tractography in white matter. J. Math. Imaging Vis. 54(1), 1–14 (2016)
Hao, X., Whitaker, R.T., Fletcher, P.T.: Adaptive Riemannian metrics for improved geodesic tracking of white matter. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_2
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Kaushik, S., Kybic, J., Bansal, A., Bihonegn, T., Slovak, J.: Potential biomarkers from positive definite 4th order tensors in HARDI. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1003–1006. IEEE (2021)
Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Mahoney, M.W.: Characterizing possible failure modes in physics-informed neural networks. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 26548–26560. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf
O’Donnell, L., Haker, S., Westin, C.-F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45786-0_57
Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)
Rechtman, A.: Existence of periodic orbits for geodesible vector fields on closed 3-manifolds. Ergod. Theory Dynam. Syst. 30(6), 1817–1841 (2010)
Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: arXiv (2020)
Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. Adv. Neural Inf. Process. Syst. 28 (2015)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 33, 7537–7547 (2020)
Tuch, D.S.: Q-ball imaging. Magn. Resonance Med. Official J. Int. Soc. Magn. Resonance Med. 52(6), 1358–1372 (2004)
Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Resonance Med. Official J. Int. Soc. Magn. Resonance Med. 48(4), 577–582 (2002)
Tuch, D.S., et al.: Diffusion MRI of complex tissue structure. Ph.D. thesis, Massachusetts Institute of Technology (2002)
Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)
Yeh, F.C., Wedeen, V.J., Tseng, W.Y.I.: Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29(9), 1626–1635 (2010)
Zhang, F., et al.: SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin. Cancer Inform. (4), 299–309 (2020)
Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dai, H., Bauer, M., Fletcher, P.T., Joshi, S. (2023). Modeling the Shape of the Brain Connectome via Deep Neural Networks. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-34048-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34047-5
Online ISBN: 978-3-031-34048-2
eBook Packages: Computer ScienceComputer Science (R0)