Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modeling the Shape of the Brain Connectome via Deep Neural Networks

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13939))

Included in the following conference series:

Abstract

The goal of diffusion-weighted magnetic resonance imaging (DWI) is to infer the structural connectivity of an individual subject’s brain in vivo. To statistically study the variability and differences between normal and abnormal brain connectomes, a mathematical model of the neural connections is required. In this paper, we represent the brain connectome as a Riemannian manifold, which allows us to model neural connections as geodesics. This leads to the challenging problem of estimating a Riemannian metric that is compatible with the DWI data, i.e., a metric such that the geodesic curves represent individual fiber tracts of the connectomics. We reduce this problem to that of solving a highly nonlinear set of partial differential equations (PDEs) and study the applicability of convolutional encoder-decoder neural networks (CEDNNs) for solving this geometrically motivated PDE. Our method achieves excellent performance in the alignment of geodesics with white matter pathways and tackles a long-standing issue in previous geodesic tractography methods: the inability to recover crossing fibers with high fidelity. Code is available at https://github.com/aarentai/Metric-Cnn-3D-IPMI.

H. Dai and S. Joshi were supported by NSF grant DMS-1912030. P. T. Fletcher was supported by NSF grant IIS-2205417. M. Bauer was supported by NSF grants DMS-1912037, DMS-1953244 and by FWF grant FWF-P 35813-N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

    Article  Google Scholar 

  2. Behrens, T.E., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Resonance Med. Official J. Int. Soc. Magn. Resonance Med. 50(5), 1077–1088 (2003)

    Article  Google Scholar 

  3. Bihonegn, T., Kaushik, S., Bansal, A., Vojtíšek, L., Slovák, J.: Geodesic fiber tracking in white matter using activation function. Comput. Methods Programs Biomed. 208, 106283 (2021)

    Article  Google Scholar 

  4. Bihonegn, T.T., Bansal, A., Slovák, J., Kaushik, S.: 4th order tensors for multi-fiber resolution and segmentation in white matter. In: 2020 7th International Conference on Biomedical and Bioinformatics Engineering, pp. 36–42 (2020)

    Google Scholar 

  5. Campbell, K.M., Dai, H., Su, Z., Bauer, M., Fletcher, P.T., Joshi, S.C.: Structural connectome atlas construction in the space of Riemannian metrics. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 291–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_23

    Chapter  Google Scholar 

  6. Cheng, G., Salehian, H., Forder, J.R., Vemuri, B.C.: Tractography from HARDI using an intrinsic unscented kalman filter. IEEE Trans. Med. Imaging 34(1), 298–305 (2014)

    Article  Google Scholar 

  7. Chuang, P.Y., Barba, L.A.: Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. arXiv preprint arXiv:2205.14249 (2022)

  8. Do Carmo, M.P., Flaherty Francis, J.: Riemannian Geometry, vol. 6. Springer, New York (1992). https://doi.org/10.1007/978-0-387-29403-2

  9. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  10. Fletcher, P.T., Tao, R., Jeong, W.-K., Whitaker, R.T.: A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 346–358. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_29

    Chapter  Google Scholar 

  11. Fuster, A., Haije, T.D., Tristán-Vega, A., Plantinga, B., Westin, C.F., Florack, L.: Adjugate diffusion tensors for geodesic tractography in white matter. J. Math. Imaging Vis. 54(1), 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hao, X., Whitaker, R.T., Fletcher, P.T.: Adaptive Riemannian metrics for improved geodesic tracking of white matter. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_2

    Chapter  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  15. Kaushik, S., Kybic, J., Bansal, A., Bihonegn, T., Slovak, J.: Potential biomarkers from positive definite 4th order tensors in HARDI. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1003–1006. IEEE (2021)

    Google Scholar 

  16. Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Mahoney, M.W.: Characterizing possible failure modes in physics-informed neural networks. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 26548–26560. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-Paper.pdf

  17. O’Donnell, L., Haker, S., Westin, C.-F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45786-0_57

    Chapter  MATH  Google Scholar 

  18. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rechtman, A.: Existence of periodic orbits for geodesible vector fields on closed 3-manifolds. Ergod. Theory Dynam. Syst. 30(6), 1817–1841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: arXiv (2020)

    Google Scholar 

  21. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  22. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  23. Tuch, D.S.: Q-ball imaging. Magn. Resonance Med. Official J. Int. Soc. Magn. Resonance Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  24. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Resonance Med. Official J. Int. Soc. Magn. Resonance Med. 48(4), 577–582 (2002)

    Article  Google Scholar 

  25. Tuch, D.S., et al.: Diffusion MRI of complex tissue structure. Ph.D. thesis, Massachusetts Institute of Technology (2002)

    Google Scholar 

  26. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  27. Yeh, F.C., Wedeen, V.J., Tseng, W.Y.I.: Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29(9), 1626–1635 (2010)

    Article  Google Scholar 

  28. Zhang, F., et al.: SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin. Cancer Inform. (4), 299–309 (2020)

    Google Scholar 

  29. Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 394, 56–81 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haocheng Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, H., Bauer, M., Fletcher, P.T., Joshi, S. (2023). Modeling the Shape of the Brain Connectome via Deep Neural Networks. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics