Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Volumetric Approach to Quantifying Region-to-Region White Matter Connectivity in Diffusion Tensor MRI

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

  • 2358 Accesses

Abstract

In this paper we present a volumetric approach for quantitatively studying white matter connectivity from diffusion tensor magnetic resonance imaging (DT-MRI). The proposed method is based on a minimization of path cost between two regions, defined as the integral of local costs that are derived from the full tensor data along the path. We solve the minimal path problem using a Hamilton-Jacobi formulation of the problem and a new, fast iterative method that computes updates on the propagating front of the cost function at every point. The solutions for the fronts emanating from the two initial regions are combined, giving a voxel-wise connectivity measurement of the optimal paths between the regions that pass through those voxels. The resulting high-connectivity voxels provide a volumetric representation of the white matter pathway between the terminal regions. We quantify the tensor data along these pathways using nonparametric regression of the tensors and of derived measures as a function of path length. In this way we can obtain volumetric measures on white-matter tracts between regions without any explicit integration of tracts. We demonstrate the proposed method on several fiber tracts from DT-MRI data of the normal human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Kubicki, M., Westin, C.F., Maier, S.E., Mamata, H., Frumin, M., Ernst-Hirshefeld, H., Kikinis, R., Jolesz, F.A., McCarley, R.W., Shenton, M.E.: Diffusion tensor imaging and its application to neuropsychiatric disorders. Harvard Review of Psychiatry 10, 234–336 (2002)

    Article  Google Scholar 

  • Lim, K., Helpern, J.: Neuropsychiatric applications of DTI—a review. NMR in Biomedicine 15, 587–593 (2002)

    Article  Google Scholar 

  • Ding, Z., Gore, J., Anderson, A.: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI. Magnetic Resonance in Medicine 49, 716–721 (2003)

    Article  Google Scholar 

  • Jones, D., Catani, M., Pierpaoli, C., Reeves, S., Shergill, S., O’Sullivan, M., Golesworthy, P., McGuire, P., Horsfield, M., Simmons, A., Williams, S., Howard, R.: Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Human Brain Mapping 27, 230–238 (2006)

    Article  Google Scholar 

  • Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Medical Image Analysis 10(5), 786–798 (2006)

    Article  Google Scholar 

  • Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In-vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)

    Article  Google Scholar 

  • Koch, M.A., Norris, D.G., M, H.G.: An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 16, 241–250 (2002)

    Article  Google Scholar 

  • Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine 50, 1077–1088 (2003)

    Article  Google Scholar 

  • Parker, G.J.M., Haroon, H.A., Wheeler-Kingshott, C.A.M.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of Magnetic Resonance Imaging 18, 242–254 (2003)

    Article  Google Scholar 

  • Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24, 524–532 (2005)

    Article  Google Scholar 

  • Parker, G., Wheeler-Kingshott, C., Barker, G.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. Transactions on Medical Imaging 21, 505–512 (2002)

    Article  Google Scholar 

  • O’Donnell, L., Haker, S., Westin, C.F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002)

    Google Scholar 

  • Jackowski, M., Kao, C.Y., Qiu, M., Constable, R.T., Staib, L.H.: Estimation of anatomical connectivity by anisotropic front propagation and diffusion tensor imaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 663–667. Springer, Heidelberg (2004)

    Google Scholar 

  • Pichon, E., Westin, C.F., Tannenbaum, A.: A Hamilton-Jacobi-Bellman approach to high angular resolution diffusion tractography. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 180–187. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: application to connectivity mapping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, Springer, Heidelberg (2004)

    Google Scholar 

  • Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system – a technical review. NMR in Biomedicine 15, 435–455 (2002)

    Article  Google Scholar 

  • Tsai, Y., Cheng, L., Osher, S., Zhao, H.: Fast sweeping methods for a class of hamilton-jacobi equations. SIAM Journal of Numerical Analysis 41, 673–694 (2003)

    Article  MATH  Google Scholar 

  • Jeong, W.K., Whitaker, R.: A fast iterative method for eikonal equations. Technical report, Scientific Computing and Imaging Institute, University of Utah (2007)

    Google Scholar 

  • Nadaraya, E.A.: On non-parametric estimates of density functions and regression curves. Theory of Probability and its Applications 10, 186–190 (1965)

    Article  Google Scholar 

  • Watson, G.S.: Smooth regression analysis. Sankhy’a Ser. A 26, 101–116 (1964)

    MATH  Google Scholar 

  • Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of IEEE TVCG/EG Symposium on Visualization 2004, pp. 147–154. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  • SCIRun: A scientific computing problem solving environment, Scientific Computing and Imaging Institute (SCI), http://software.sci.utah.edu/scirun.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Fletcher, P.T., Tao, R., Jeong, WK., Whitaker, R.T. (2007). A Volumetric Approach to Quantifying Region-to-Region White Matter Connectivity in Diffusion Tensor MRI. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics