Abstract
In this paper we present a volumetric approach for quantitatively studying white matter connectivity from diffusion tensor magnetic resonance imaging (DT-MRI). The proposed method is based on a minimization of path cost between two regions, defined as the integral of local costs that are derived from the full tensor data along the path. We solve the minimal path problem using a Hamilton-Jacobi formulation of the problem and a new, fast iterative method that computes updates on the propagating front of the cost function at every point. The solutions for the fronts emanating from the two initial regions are combined, giving a voxel-wise connectivity measurement of the optimal paths between the regions that pass through those voxels. The resulting high-connectivity voxels provide a volumetric representation of the white matter pathway between the terminal regions. We quantify the tensor data along these pathways using nonparametric regression of the tensors and of derived measures as a function of path length. In this way we can obtain volumetric measures on white-matter tracts between regions without any explicit integration of tracts. We demonstrate the proposed method on several fiber tracts from DT-MRI data of the normal human brain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kubicki, M., Westin, C.F., Maier, S.E., Mamata, H., Frumin, M., Ernst-Hirshefeld, H., Kikinis, R., Jolesz, F.A., McCarley, R.W., Shenton, M.E.: Diffusion tensor imaging and its application to neuropsychiatric disorders. Harvard Review of Psychiatry 10, 234–336 (2002)
Lim, K., Helpern, J.: Neuropsychiatric applications of DTI—a review. NMR in Biomedicine 15, 587–593 (2002)
Ding, Z., Gore, J., Anderson, A.: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI. Magnetic Resonance in Medicine 49, 716–721 (2003)
Jones, D., Catani, M., Pierpaoli, C., Reeves, S., Shergill, S., O’Sullivan, M., Golesworthy, P., McGuire, P., Horsfield, M., Simmons, A., Williams, S., Howard, R.: Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Human Brain Mapping 27, 230–238 (2006)
Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Medical Image Analysis 10(5), 786–798 (2006)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In-vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)
Koch, M.A., Norris, D.G., M, H.G.: An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 16, 241–250 (2002)
Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine 50, 1077–1088 (2003)
Parker, G.J.M., Haroon, H.A., Wheeler-Kingshott, C.A.M.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of Magnetic Resonance Imaging 18, 242–254 (2003)
Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24, 524–532 (2005)
Parker, G., Wheeler-Kingshott, C., Barker, G.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. Transactions on Medical Imaging 21, 505–512 (2002)
O’Donnell, L., Haker, S., Westin, C.F.: New approaches to estimation of white matter connectivity in diffusion tensor MRI: elliptic PDEs and geodesics in a tensor-warped space. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 459–466. Springer, Heidelberg (2002)
Jackowski, M., Kao, C.Y., Qiu, M., Constable, R.T., Staib, L.H.: Estimation of anatomical connectivity by anisotropic front propagation and diffusion tensor imaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 663–667. Springer, Heidelberg (2004)
Pichon, E., Westin, C.F., Tannenbaum, A.: A Hamilton-Jacobi-Bellman approach to high angular resolution diffusion tractography. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 180–187. Springer, Heidelberg (2005)
Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from diffusion tensor MRI: application to connectivity mapping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, Springer, Heidelberg (2004)
Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system – a technical review. NMR in Biomedicine 15, 435–455 (2002)
Tsai, Y., Cheng, L., Osher, S., Zhao, H.: Fast sweeping methods for a class of hamilton-jacobi equations. SIAM Journal of Numerical Analysis 41, 673–694 (2003)
Jeong, W.K., Whitaker, R.: A fast iterative method for eikonal equations. Technical report, Scientific Computing and Imaging Institute, University of Utah (2007)
Nadaraya, E.A.: On non-parametric estimates of density functions and regression curves. Theory of Probability and its Applications 10, 186–190 (1965)
Watson, G.S.: Smooth regression analysis. Sankhy’a Ser. A 26, 101–116 (1964)
Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of IEEE TVCG/EG Symposium on Visualization 2004, pp. 147–154. IEEE Computer Society Press, Los Alamitos (2004)
SCIRun: A scientific computing problem solving environment, Scientific Computing and Imaging Institute (SCI), http://software.sci.utah.edu/scirun.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Fletcher, P.T., Tao, R., Jeong, WK., Whitaker, R.T. (2007). A Volumetric Approach to Quantifying Region-to-Region White Matter Connectivity in Diffusion Tensor MRI. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-73273-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73272-3
Online ISBN: 978-3-540-73273-0
eBook Packages: Computer ScienceComputer Science (R0)