Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Parameterized Complexity of s-club Cluster Deletion Problems

  • Conference paper
  • First Online:
SOFSEM 2023: Theory and Practice of Computer Science (SOFSEM 2023)

Abstract

We study the parameterized complexity of the \(s\)-Club Cluster Edge Deletion problem: Given a graph G and two integers \(s \ge 2\) and \(k \ge 1\), is it possible to remove at most k edges from G such that each connected component of the resulting graph has diameter at most s? This problem is known to be \(\texttt{NP}\)-hard already when \(s = 2\).We prove that it admits a fixed-parameter tractable algorithm when parameterized by s and the treewidth of the input graph. The same result easily transfers to the case in which we can remove at most k vertices, rather than k edges, from G such that each connected component of the resulting graph has diameter at most s, namely to \(s\)-Club Cluster Vertex Deletion.

This work was partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”; (ii) University of Perugia, Fondi di Ricerca di Ateneo, edizione 2021, project “AIDMIX - Artificial Intelligence for Decision making: Methods for Interpretability and eXplainability”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since the matrix is symmetric, when we update a cell \(D({\partial {C}})[a,b]\) we assume that also \(D({\partial {C}})[b,a]\) is updated with the same value.

References

  1. Abu-Khzam, F.N., Makarem, N., Shehab, M.: An improved fixed-parameter algorithm for 2-club cluster edge deletion. CoRR. arXiv:2107.01133 (2021)

  2. Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Soc. 3, 113–126 (1973). https://doi.org/10.1080/0022250X.1973.9989826

  3. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological networks. J. Comb. Optim. 10(1), 23–39 (2005). https://doi.org/10.1007/s10878-005-1857-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Balasundaram, B., Pajouh, F.M.: Graph theoretic clique relaxations and applications. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1559–1598. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_9

    Chapter  Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004). https://doi.org/10.1023/B:MACH.0000033116.57574.95

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3/4), 281–297 (1999). https://doi.org/10.1089/106652799318274

    Article  Google Scholar 

  7. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. J. Discrete Algorithms 16, 79–89 (2012). https://doi.org/10.1016/j.jda.2012.04.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996). https://doi.org/10.1006/jagm.1996.0049

    Article  MathSciNet  MATH  Google Scholar 

  10. Chakraborty, D., Chandran, L.S., Padinhatteeri, S., Pillai, R.R.: Algorithms and complexity of s-club cluster vertex deletion. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS, vol. 12757, pp. 152–164. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79987-8_11

    Chapter  MATH  Google Scholar 

  11. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci. 78(1), 211–220 (2012). https://doi.org/10.1016/j.jcss.2011.04.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Dondi, R., Lafond, M.: On the tractability of covering a graph with 2-clubs. In: Gąsieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651, pp. 243–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-0_17

    Chapter  MATH  Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science, 1st Edition. Springer (1999). https://doi.org/10.1007/978-1-4612-0515-9

  14. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80(7), 1430–1447 (2014). https://doi.org/10.1016/j.jcss.2014.04.015

    Article  MathSciNet  MATH  Google Scholar 

  15. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

    Book  MATH  Google Scholar 

  16. Komusiewicz, C.: Multivariate algorithmics for finding cohesive subnetworks. Algorithms 9(1), 21 (2016). https://doi.org/10.3390/a9010021

    Article  MathSciNet  MATH  Google Scholar 

  17. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discret. Appl. Math. 160(15), 2259–2270 (2012). https://doi.org/10.1016/j.dam.2012.05.019

    Article  MathSciNet  MATH  Google Scholar 

  18. Laan, S., Marx, M., Mokken, R.J.: Close communities in social networks: boroughs and 2-clubs. Soc. Netw. Anal. Min. 6(1), 1–16 (2016). https://doi.org/10.1007/s13278-016-0326-0

    Article  Google Scholar 

  19. Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM/FAW -2012. LNCS, vol. 7285, pp. 235–246. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29700-7_22

    Chapter  Google Scholar 

  20. Misra, N., Panolan, F., Saurabh, S.: Subexponential algorithm for d-cluster edge deletion: exception or rule? J. Comput. Syst. Sci. 113, 150–162 (2020). https://doi.org/10.1016/j.jcss.2020.05.008

    Article  MathSciNet  MATH  Google Scholar 

  21. Mokken, R.: Cliques, clubs and clans. Qual. Quan. Int. J. Methodol. 13(2), 161–173 (1979). https://doi.org/10.1007/BF00139635

    Article  Google Scholar 

  22. Mokken, R.J., Heemskerk, E.M., Laan, S.: Close communication and 2-clubs in corporate networks: europe 2010. Soc. Netw. Anal. Min. 6(1), 1–19 (2016). https://doi.org/10.1007/s13278-016-0345-x

    Article  Google Scholar 

  23. Montecchiani, F., Ortali, G., Piselli, T., Tappini, A.: On the parameterized complexity of the s-club cluster edge deletion problem. CoRR. arXiv:2205.10834 (2022)

  24. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Google Scholar 

  25. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007). https://doi.org/10.1016/j.cosrev.2007.05.001

    Article  Google Scholar 

  26. Schäfer, A.: Exact algorithms for \(s\)-club finding and related problems. Diploma thesis, Friedrich-Schiller-Universität Jena (2009)

    Google Scholar 

  27. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math. 144(1–2), 173–182 (2004). https://doi.org/10.1016/j.dam.2004.01.007

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, Z., Leahy, R.M.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993). https://doi.org/10.1109/34.244673

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Tappini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montecchiani, F., Ortali, G., Piselli, T., Tappini, A. (2023). On the Parameterized Complexity of s-club Cluster Deletion Problems. In: Gąsieniec, L. (eds) SOFSEM 2023: Theory and Practice of Computer Science. SOFSEM 2023. Lecture Notes in Computer Science, vol 13878. Springer, Cham. https://doi.org/10.1007/978-3-031-23101-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23101-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23100-1

  • Online ISBN: 978-3-031-23101-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics