Abstract
We study the parameterized and classical complexity of two related problems on undirected graphs \(G=(V,E)\). In Strong Triadic Closure we aim to label the edges in E as strong and weak such that at most k edges are weak and G contains no induced \(P_3\) with two strong edges. In Cluster Deletion we aim to destroy all induced \(P_3\)s by a minimum number of edge deletions. We first show that Strong Triadic Closure admits a 4k-vertex kernel. Then, we study parameterization by \(\ell :=|E|-k\) and show that both problems are fixed-parameter tractable and unlikely to admit a polynomial kernel with respect to \(\ell \). Finally, we give a dichotomy of the classical complexity of both problems on H-free graphs for all H of order four.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Inf. Process. Lett. 111(14), 717–721 (2011)
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)
Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)
Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, vol. 3. SIAM, Philadelphia (1999)
Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1
Gao, Y., Hare, D.R., Nastos, J.: The cluster deletion problem for cographs. Discret. Math. 313(23), 2763–2771 (2013)
Golovach, P.A., Heggernes, P., Konstantinidis, A.L., Lima, P.T., Papadopoulos, C.: Parameterized Aspects of Strong Subgraph Closure. ArXiv e-prints, abs/1802.10386, February 2018
Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009)
Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)
Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54945-5_49
Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discret. Appl. Math. 160(15), 2259–2270 (2012)
Konstantinidis, A.L., Nikolopoulos, S.D., Papadopoulos, C.: Strong triadic closure in cographs and graphs of low maximum degree. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 346–358. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_29
Konstantinidis, A.L., Papadopoulos, C.: Maximizing the strong triadic closure in split graphs and proper interval graphs. In: Proceedings of the 28th ISAAC. LIPIcs, Dagstuhl, Germany, vol. 92, pp. 53:1–53:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae 15(2), 307–309 (1974)
Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory Comput. Syst. 44(1), 91–104 (2009)
Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discret. Math. 29(1), 53–76 (1980)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math. 144(1–2), 173–182 (2004)
Sintos, S., Tsaparas, P.: Using strong triadic closure to characterize ties in social networks. In: Proceedigns of the 20th KDD, pp. 1466–1475. ACM, New York (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Grüttemeier, N., Komusiewicz, C. (2018). On the Relation of Strong Triadic Closure and Cluster Deletion. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-00256-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00255-8
Online ISBN: 978-3-030-00256-5
eBook Packages: Computer ScienceComputer Science (R0)