Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Relation of Strong Triadic Closure and Cluster Deletion

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

Abstract

We study the parameterized and classical complexity of two related problems on undirected graphs \(G=(V,E)\). In Strong Triadic Closure we aim to label the edges in E as strong and weak such that at most k edges are weak and G contains no induced \(P_3\) with two strong edges. In Cluster Deletion we aim to destroy all induced \(P_3\)s by a minimum number of edge deletions. We first show that Strong Triadic Closure admits a 4k-vertex kernel. Then, we study parameterization by \(\ell :=|E|-k\) and show that both problems are fixed-parameter tractable and unlikely to admit a polynomial kernel with respect to \(\ell \). Finally, we give a dichotomy of the classical complexity of both problems on H-free graphs for all H of order four.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Inf. Process. Lett. 111(14), 717–721 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

    Article  MathSciNet  Google Scholar 

  4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, vol. 3. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  7. Gao, Y., Hare, D.R., Nastos, J.: The cluster deletion problem for cographs. Discret. Math. 313(23), 2763–2771 (2013)

    Article  MathSciNet  Google Scholar 

  8. Golovach, P.A., Heggernes, P., Konstantinidis, A.L., Lima, P.T., Papadopoulos, C.: Parameterized Aspects of Strong Subgraph Closure. ArXiv e-prints, abs/1802.10386, February 2018

    Google Scholar 

  9. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009)

    Article  MathSciNet  Google Scholar 

  10. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MathSciNet  Google Scholar 

  11. Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54945-5_49

    Chapter  Google Scholar 

  12. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discret. Appl. Math. 160(15), 2259–2270 (2012)

    Article  MathSciNet  Google Scholar 

  13. Konstantinidis, A.L., Nikolopoulos, S.D., Papadopoulos, C.: Strong triadic closure in cographs and graphs of low maximum degree. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 346–358. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_29

    Chapter  MATH  Google Scholar 

  14. Konstantinidis, A.L., Papadopoulos, C.: Maximizing the strong triadic closure in split graphs and proper interval graphs. In: Proceedings of the 28th ISAAC. LIPIcs, Dagstuhl, Germany, vol. 92, pp. 53:1–53:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  15. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae 15(2), 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory Comput. Syst. 44(1), 91–104 (2009)

    Article  MathSciNet  Google Scholar 

  17. Sbihi, N.: Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discret. Math. 29(1), 53–76 (1980)

    Article  MathSciNet  Google Scholar 

  18. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math. 144(1–2), 173–182 (2004)

    Article  MathSciNet  Google Scholar 

  19. Sintos, S., Tsaparas, P.: Using strong triadic closure to characterize ties in social networks. In: Proceedigns of the 20th KDD, pp. 1466–1475. ACM, New York (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Grüttemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grüttemeier, N., Komusiewicz, C. (2018). On the Relation of Strong Triadic Closure and Cluster Deletion. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics