Nothing Special   »   [go: up one dir, main page]

Skip to main content

RamGAN: Region Attentive Morphing GAN for Region-Level Makeup Transfer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13682))

Included in the following conference series:

Abstract

In this paper, we propose a region adaptive makeup transfer GAN, called RamGAN, for precise region-level makeup transfer. Compared to face-level transfer methods, our RamGAN uses spatial-aware Region Attentive Morphing Module (RAMM) to encode Region Attentive Matrices (RAMs) for local regions like lips, eye shadow and skin. After that, the Region Style Injection Module (RSIM) is applied to RAMs produced by RAMM to obtain two Region Makeup Tensors, \(\gamma \) and \(\beta \), which are subsequently added to the feature map of source image to transfer the makeup. As attention and makeup styles are calculated for each region, RamGAN can achieve better disentangled makeup transfer for different facial regions. When there are significant pose and expression variations between source and reference, RamGAN can also achieve better transfer results, due to the integration of spatial information and region-level correspondence. Experimental results are conducted on public datasets like MT, M-Wild and Makeup datasets, both visual and quantitative results and user study suggest that our approach achieves better transfer results than state-of-the-art methods like BeautyGAN, BeautyGlow, DMT, CPM and PSGAN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As the source code of BeautyGlow is not available, we directly used the makeup transfer results posted on https://github.com/BeautyGlow/BeautyGlow.github.io for the same source and reference images for comparison.

References

  1. Chen, H.J., Hui, K.M., Wang, S.Y., Tsao, L.W., Shuai, H.H., Cheng, W.H.: BeautyGlow: on-demand makeup transfer framework with reversible generative network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10042–10050 (2019)

    Google Scholar 

  2. Chen, J., Lu, W., Shen, L.: Selective multi-scale learning for object detection. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12892, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1_1

    Chapter  Google Scholar 

  3. Chen, J., Zhao, X., Shen, L.: Delving into the scale variance problem in object detection. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 902–909. IEEE (2021)

    Google Scholar 

  4. Chen, W., Shen, L., Lai, Z.: Introspective GAN for meshface recognition. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3472–3476. IEEE (2019)

    Google Scholar 

  5. Chen, W., Xie, X., Jia, X., Shen, L.: Texture deformation based generative adversarial networks for multi-domain face editing. In: Nayak, A.C., Sharma, A. (eds.) PRICAI 2019. LNCS (LNAI), vol. 11670, pp. 257–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29908-8_21

    Chapter  Google Scholar 

  6. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  9. Gu, Q., Wang, G., Chiu, M.T., Tai, Y.W., Tang, C.K.: LADN: local adversarial disentangling network for facial makeup and de-makeup. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10481–10490 (2019)

    Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  11. Jiang, W., et al.: PSGAN: pose and expression robust spatial-aware GAN for customizable makeup transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5194–5202 (2020)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039 (2018)

  14. Li, T., et al.: BeautyGAN: instance-level facial makeup transfer with deep generative adversarial network. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 645–653 (2018)

    Google Scholar 

  15. Liu, S., et al.: PSGAN++: robust detail-preserving makeup transfer and removal. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8538–8551 (2021)

    Google Scholar 

  16. Liu, W., Chen, W., Shen, L.: Translate the facial regions you like using region-wise normalization. arXiv preprint arXiv:2007.14615 (2020)

  17. Liu, W., Chen, W., Yang, Z., Shen, L.: Translate the facial regions you like using self-adaptive region translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2180–2188 (2021)

    Google Scholar 

  18. Liu, W., Chen, W., Zhu, Y., Shen, L.: SatGAN: augmenting age biased dataset for cross-age face recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 1368–1375. IEEE (2021)

    Google Scholar 

  19. Nguyen, T., Tran, A.T., Hoai, M.: Lipstick ain’t enough: beyond color matching for in-the-wild makeup transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13305–13314 (2021)

    Google Scholar 

  20. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Xie, J., Luo, C., Zhu, X., Jin, Z., Lu, W., Shen, L.: Online refinement of low-level feature based activation map for weakly supervised object localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 132–141 (2021)

    Google Scholar 

  25. Zhang, H., Chen, W., He, H., Jin, Y.: Disentangled makeup transfer with generative adversarial network. arXiv preprint arXiv:1907.01144 (2019)

  26. Zhang, X., Zhu, Y., Chen, W., Liu, W., Shen, L.: Gated switchGAN for multi-domain facial image translation. IEEE Trans. Multimedia 24, 1990–2003 (2021)

    Article  Google Scholar 

  27. Zhao, X., Chen, J., Liu, M., Ye, K., Shen, L.: Multi-scale attention-based feature pyramid networks for object detection. In: Peng, Y., Hu, S.-M., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds.) ICIG 2021. LNCS, vol. 12888, pp. 405–417. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87355-4_34

    Chapter  Google Scholar 

  28. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China under grant no. 91959108, and Guangdong Basic and Applied Basic Research Foundation under Grant no. 2020A1515111199 and 2022A1515011018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1485 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, J., Chen, J., Liu, W., Hou, X., Shen, L. (2022). RamGAN: Region Attentive Morphing GAN for Region-Level Makeup Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20047-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20046-5

  • Online ISBN: 978-3-031-20047-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics