Abstract
In this paper, we propose a region adaptive makeup transfer GAN, called RamGAN, for precise region-level makeup transfer. Compared to face-level transfer methods, our RamGAN uses spatial-aware Region Attentive Morphing Module (RAMM) to encode Region Attentive Matrices (RAMs) for local regions like lips, eye shadow and skin. After that, the Region Style Injection Module (RSIM) is applied to RAMs produced by RAMM to obtain two Region Makeup Tensors, \(\gamma \) and \(\beta \), which are subsequently added to the feature map of source image to transfer the makeup. As attention and makeup styles are calculated for each region, RamGAN can achieve better disentangled makeup transfer for different facial regions. When there are significant pose and expression variations between source and reference, RamGAN can also achieve better transfer results, due to the integration of spatial information and region-level correspondence. Experimental results are conducted on public datasets like MT, M-Wild and Makeup datasets, both visual and quantitative results and user study suggest that our approach achieves better transfer results than state-of-the-art methods like BeautyGAN, BeautyGlow, DMT, CPM and PSGAN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As the source code of BeautyGlow is not available, we directly used the makeup transfer results posted on https://github.com/BeautyGlow/BeautyGlow.github.io for the same source and reference images for comparison.
References
Chen, H.J., Hui, K.M., Wang, S.Y., Tsao, L.W., Shuai, H.H., Cheng, W.H.: BeautyGlow: on-demand makeup transfer framework with reversible generative network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10042–10050 (2019)
Chen, J., Lu, W., Shen, L.: Selective multi-scale learning for object detection. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12892, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1_1
Chen, J., Zhao, X., Shen, L.: Delving into the scale variance problem in object detection. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 902–909. IEEE (2021)
Chen, W., Shen, L., Lai, Z.: Introspective GAN for meshface recognition. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3472–3476. IEEE (2019)
Chen, W., Xie, X., Jia, X., Shen, L.: Texture deformation based generative adversarial networks for multi-domain face editing. In: Nayak, A.C., Sharma, A. (eds.) PRICAI 2019. LNCS (LNAI), vol. 11670, pp. 257–269. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29908-8_21
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)
Gu, Q., Wang, G., Chiu, M.T., Tai, Y.W., Tang, C.K.: LADN: local adversarial disentangling network for facial makeup and de-makeup. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10481–10490 (2019)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems 30 (2017)
Jiang, W., et al.: PSGAN: pose and expression robust spatial-aware GAN for customizable makeup transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5194–5202 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. arXiv preprint arXiv:1807.03039 (2018)
Li, T., et al.: BeautyGAN: instance-level facial makeup transfer with deep generative adversarial network. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 645–653 (2018)
Liu, S., et al.: PSGAN++: robust detail-preserving makeup transfer and removal. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8538–8551 (2021)
Liu, W., Chen, W., Shen, L.: Translate the facial regions you like using region-wise normalization. arXiv preprint arXiv:2007.14615 (2020)
Liu, W., Chen, W., Yang, Z., Shen, L.: Translate the facial regions you like using self-adaptive region translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2180–2188 (2021)
Liu, W., Chen, W., Zhu, Y., Shen, L.: SatGAN: augmenting age biased dataset for cross-age face recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 1368–1375. IEEE (2021)
Nguyen, T., Tran, A.T., Hoai, M.: Lipstick ain’t enough: beyond color matching for in-the-wild makeup transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13305–13314 (2021)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Xie, J., Luo, C., Zhu, X., Jin, Z., Lu, W., Shen, L.: Online refinement of low-level feature based activation map for weakly supervised object localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 132–141 (2021)
Zhang, H., Chen, W., He, H., Jin, Y.: Disentangled makeup transfer with generative adversarial network. arXiv preprint arXiv:1907.01144 (2019)
Zhang, X., Zhu, Y., Chen, W., Liu, W., Shen, L.: Gated switchGAN for multi-domain facial image translation. IEEE Trans. Multimedia 24, 1990–2003 (2021)
Zhao, X., Chen, J., Liu, M., Ye, K., Shen, L.: Multi-scale attention-based feature pyramid networks for object detection. In: Peng, Y., Hu, S.-M., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds.) ICIG 2021. LNCS, vol. 12888, pp. 405–417. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87355-4_34
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
This research was supported by National Natural Science Foundation of China under grant no. 91959108, and Guangdong Basic and Applied Basic Research Foundation under Grant no. 2020A1515111199 and 2022A1515011018.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xiang, J., Chen, J., Liu, W., Hou, X., Shen, L. (2022). RamGAN: Region Attentive Morphing GAN for Region-Level Makeup Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-20047-2_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20046-5
Online ISBN: 978-3-031-20047-2
eBook Packages: Computer ScienceComputer Science (R0)