Abstract
Most existing methods view makeup transfer as transferring color distributions of different facial regions and ignore details such as eye shadows and blushes. Besides, they only achieve controllable transfer within predefined fixed regions. This paper emphasizes the transfer of makeup details and steps towards more flexible controls. To this end, we propose Exquisite and locally editable GAN for makeup transfer (EleGANt). It encodes facial attributes into pyramidal feature maps to preserves high-frequency information. It uses attention to extract makeup features from the reference and adapt them to the source face, and we introduce a novel Sow-Attention Module that applies attention within shifted overlapped windows to reduce the computational cost. Moreover, EleGANt is the first to achieve customized local editing within arbitrary areas by corresponding editing on the feature maps. Extensive experiments demonstrate that EleGANt generates realistic makeup faces with exquisite details and achieves state-of-the-art performance. The code is available at https://github.com/Chenyu-Yang-2000/EleGANt.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, J., Xiong, H., Huan, J., Luo, J.: Ultrafast photorealistic style transfer via neural architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10443–10450 (2020)
Cai, M., Zhang, H., Huang, H., Geng, Q., Li, Y., Huang, G.: Frequency domain image translation: more photo-realistic, better identity-preserving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13930–13940 (2021)
Chang, H., Lu, J., Yu, F., Finkelstein, A.: PairedCycleGAN: asymmetric style transfer for applying and removing makeup. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 40–48 (2018)
Chen, C.F., Panda, R., Fan, Q.: RegionViT: regional-to-local attention for vision transformers. In: Proceedings of the International Conference on Learning Representations (ICLR) (2022)
Chen, H.J., Hui, K.M., Wang, S.Y., Tsao, L.W., Shuai, H.H., Cheng, W.H.: BeautyGlow: on-demand makeup transfer framework with reversible generative network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10042–10050 (2019)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8188–8197 (2020)
Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers. In: Proceedings of the International Conference on Neural Information Processing Systems (NIPS), pp. 9355–9366 (2021)
Deng, H., Han, C., Cai, H., Han, G., He, S.: Spatially-invariant style-codes controlled makeup transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6549–6557 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the International Conference on Neural Information Processing Systems (NIPS) (2014)
Gu, Q., Wang, G., Chiu, M.T., Tai, Y.W., Tang, C.K.: LADN: local adversarial disentangling network for facial makeup and de-makeup. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10481–10490 (2019)
Guo, D., Sim, T.: Digital face makeup by example. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–79 (2009)
Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial dimensions of vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11936–11945 (2021)
Ho, J., Kalchbrenner, N., Weissenborn, D., Salimans, T.: Axial attention in multidimensional transformers. arXiv preprint arXiv:1912.12180 (2019)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1501–1510 (2017)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Proceedings of the International Conference on Neural Information Processing Systems (NIPS), pp. 2017–2025 (2015)
Jiang, W., et al.: PSGAN: pose and expression robust spatial-aware GAN for customizable makeup transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5194–5202 (2020)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 694–711 (2016)
Kim, S.S., Kolkin, N., Salavon, J., Shakhnarovich, G.: Deformable style transfer. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 246–261 (2020)
Li, C., Zhou, K., Lin, S.: Simulating makeup through physics-based manipulation of intrinsic image layers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4621–4629 (2015)
Li, T., et al.: BeautyGAN: instance-level facial makeup transfer with deep generative adversarial network. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 645–653 (2018)
Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. ACM Trans. Graph. 36(4), 1–15 (2017)
Liu, L., Xing, J., Liu, S., Xu, H., Zhou, X., Yan, S.: Wow! You are so beautiful today! ACM Trans. Multim. Comput. Commun. Appl. (TOMM) 11(1s), 1–22 (2014)
Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)
Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4990–4998 (2017)
Parmar, N., et al.: Image transformer. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 4055–4064 (2018)
Rakhimov, R., Volkhonskiy, D., Artemov, A., Zorin, D., Burnaev, E.: Latent video transformer. In: Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), pp. 101–112 (2021)
Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035–2048 (2018)
Tong, W.S., Tang, C.K., Brown, M.S., Xu, Y.Q.: Example-based cosmetic transfer. In: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (PG), pp. 211–218 (2007)
Vaswani, A., et al.: Attention is all you need. In: Proceedings of the International Conference on Neural Information Processing Systems (NIPS), pp. 6000–6010 (2017)
Wan, Z., Chen, H., An, J., Jiang, W., Yao, C., Luo, J.: Facial attribute transformers for precise and robust makeup transfer. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1717–1726 (2022)
Wang, H., Li, Y., Wang, Y., Hu, H., Yang, M.H.: Collaborative distillation for ultra-resolution universal style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1860–1869 (2020)
Wang, W., et al.: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 568–578 (2021)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7794–7803 (2018)
Weissenborn, D., Täckström, O., Uszkoreit, J.: Scaling autoregressive video models. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)
Wu, C., et al.: Godiva: generating open-domain videos from natural descriptions. arXiv preprint arXiv:2104.14806 (2021)
Wu, C., et al.: N\(\backslash \)” UWA: visual synthesis pre-training for neural visual world creation. arXiv preprint arXiv:2111.12417 (2021)
Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 2048–2057 (2015)
Xu, L., Du, Y., Zhang, Y.: An automatic framework for example-based virtual makeup. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 3206–3210 (2013)
Yuan, L., et al.: Tokens-to-token VIT: Training vision transformers from scratch on imageNet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 558–567 (2021)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
Zhang, P., et al.: Multi-scale vision longformer: a new vision transformer for high-resolution image encoding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2998–3008 (2021)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2223–2232 (2017)
Acknowledgements
This work is supported by the Ministry of Science and Technology of the People´s Republic of China, the 2030 Innovation Megaprojects “Program on New Generation Artificial Intelligence” (Grant No. 2021AAA0150000). This work is also supported by a grant from the Guoqiang Institute, Tsinghua University. Thanks to Steve Lin for his pre-reading and constructive suggestions.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, C., He, W., Xu, Y., Gao, Y. (2022). EleGANt: Exquisite and Locally Editable GAN for Makeup Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-19787-1_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19786-4
Online ISBN: 978-3-031-19787-1
eBook Packages: Computer ScienceComputer Science (R0)