Nothing Special   »   [go: up one dir, main page]

Skip to main content

QIVISE: A Quantum-Inspired Interactive Video Search Engine in VBS2023

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13833))

Included in the following conference series:

Abstract

In this paper, we present a quantum-inspired interactive video search engine (QIVISE), which will be tested in VBS2023. QIVISE aims at assisting the user in dealing with Known-Item Search and Ad-hoc Video Search tasks with high efficiency and accuracy. QIVISE is based on a text-image encoder to achieve multi-modal embedding and introduces multiple interaction possibilities, including a novel quantum-inspired interaction on paradigm, label search, and multi-modal search to refine the retrieval results via user’s interaction and feedback.

W. Song, J. He and X. Li—These authors contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Z., Zhu, B.: Some formal analysis of Rocchio’s similarity-based relevance feedback algorithm. Inf. Retrieval 5, 61–86 (2002). https://doi.org/10.1023/A:1012730924277

    Article  MATH  Google Scholar 

  2. Gan, J., Tao, Y.: DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (2015). https://doi.org/10.1145/2723372.2737792

  3. Hezel, N., Schall, K., Jung, K., Barthel, K.U.: Efficient search and browsing of large-scale video collections with vibro. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 487–492. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_43

    Chapter  Google Scholar 

  4. Kenton, J.D., Toutanova, L.K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT (2019)

    Google Scholar 

  5. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2022). https://doi.org/10.48550/arXiv.2201.12086

  6. Lokoč, J., et al.: Is the reign of interactive search eternal? Findings from the video browser showdown 2020. ACM Trans. Multimedia Comput. Commun. Appl. 17(3), 1–26 (2021)

    Article  Google Scholar 

  7. Rossetto, L., Amiri Parian, M., Gasser, R., Giangreco, I., Heller, S., Schuldt, H.: Deep learning-based concept detection in vitrivr. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 616–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_55

    Chapter  Google Scholar 

  8. Uprety, S., Gkoumas, D., Song, D.: A survey of quantum theory inspired approaches to information retrieval. ACM Comput. Surv. (2021). https://doi.org/10.1145/3402179

    Article  Google Scholar 

  9. Wang, P., Hou, Y., Li, Z., Zhang, Y.: QIRM: a quantum interactive retrieval model for session search. Neurocomputing (2021). https://doi.org/10.1016/j.neucom.2021.04.013

    Article  Google Scholar 

  10. Wu, H., et al.: UniKeyphrase: a unified extraction and generation framework for keyphrase prediction. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP (2021). https://doi.org/10.48550/arXiv.2106.04847

  11. https://github.com/milvus-io/milvus

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. U1903214, 61876135) and by Ministry of Education Industry-University Cooperation and Collaborative Education Projects (No. 202102246004). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, W., He, J., Li, X., Feng, S., Liang, C. (2023). QIVISE: A Quantum-Inspired Interactive Video Search Engine in VBS2023. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics