Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Learning-Based Concept Detection in vitrivr

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11296))

Included in the following conference series:

Abstract

This paper presents the most recent additions to the vitrivr retrieval stack, which will be put to the test in the context of the 2019 Video Browser Showdown (VBS). The vitrivr stack has been extended by approaches for detecting, localizing, or describing concepts and actions in video scenes using various convolutional neural networks. Leveraging those additions, we have added support for searching the video collection based on semantic sketches. Furthermore, vitrivr offers new types of labels for text-based retrieval. In the same vein, we have also improved upon vitrivr’s pre-existing capabilities for extracting text from video through scene text recognition. Moreover, the user interface has received a major overhaul so as to make it more accessible to novice users, especially for query formulation and result exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/hx173149/C3D-tensorflow.

  2. 2.

    https://github.com/vitrivr.

References

  1. Abadi, M., Barham, P., Chen, J., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI), vol. 16, pp. 265–283. USENIX, Savannah, GA, USA (2016)

    Google Scholar 

  2. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany (2018, page to appear)

    Google Scholar 

  3. Cobârzan, C., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools and Appl. (MTAP) 76(4), 5539–5571 (2017)

    Google Scholar 

  4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223. IEEE, Las Vegas (2016)

    Google Scholar 

  5. Mark Everingham, S.M., Eslami, A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. (IJCV) 111(1), 98–136 (2015)

    Article  Google Scholar 

  6. Furuta, R., Inoue, N., Yamasaki, T.: Efficient and interactive spatial-semantic image retrieval. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10704, pp. 190–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73603-7_16

    Chapter  Google Scholar 

  7. Giangreco, I., Schuldt, H.: ADAM\(_{pro}\): database support for big multimedia retrieval. Datenbank-Spektrum 16(1), 17–26 (2016)

    Google Scholar 

  8. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227, pp. 1–10 (2014)

  9. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F.-F.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1725–1732. IEEE, Columbus (2014)

    Google Scholar 

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (JMLR) 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, pp. 1–12 (2013)

  13. Rossetto, L., Giangreco, I., Gasser, R., Schuldt, H.: Competitive video retrieval with vitrivr. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 403–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_41

    Chapter  Google Scholar 

  14. Rossetto, L., et al.: IMOTION – searching for video sequences using multi-shot sketch queries. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 377–382. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27674-8_36

    Chapter  Google Scholar 

  15. Rossetto, L., Giangreco, I., Schuldt, H.: Cineast: a multi-feature sketch-based video retrieval engine. In: Proceedings of the International Symposium on Multimedia (ISM), pp. 18–23. IEEE, Taichung, December 2014

    Google Scholar 

  16. Rossetto, L., et al.: IMOTION — a content-based video retrieval engine. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 255–260. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14442-9_24

    Chapter  Google Scholar 

  17. Rossetto, L., Giangreco, I., Tănase, C., Schuldt, H.: vitrivr: a flexible retrieval stack supporting multiple query modesfor searching in multimedia collections. In: Proceedings of the ACM Conference on Multimedia Conference (ACM MM), pp. 1183–1186. ACM, Amsterdam, October 2016

    Google Scholar 

  18. Rossetto, L., Giangreco, I., Tănase, C., Schuldt, H., Dupont, S., Seddati, O.: Enhanced retrieval and browsing in the IMOTION system. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 469–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51814-5_43

    Chapter  Google Scholar 

  19. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 39(11), 2298–2304 (2017)

    Article  Google Scholar 

  20. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 4489–4497. IEEE, Santiago (2015)

    Google Scholar 

  21. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 39(4), 652–663 (2017)

    Article  Google Scholar 

  22. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 4. IEEE, Honolulu (2017)

    Google Scholar 

  23. Zhou, X., et al.: East: an efficient and accurate scene text detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2651. IEEE, Honolulu (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Rossetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossetto, L., Amiri Parian, M., Gasser, R., Giangreco, I., Heller, S., Schuldt, H. (2019). Deep Learning-Based Concept Detection in vitrivr. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05716-9_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05715-2

  • Online ISBN: 978-3-030-05716-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics