Nothing Special   »   [go: up one dir, main page]

Skip to main content

Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

We will consider genome-scale metabolic models that attempt to describe the metabolism of human cells focusing on breast cells. The model has two versions related to the presence or absence of a specific breast tumor. The aim will be to mine these genome-scale models as a multi-objective optimization problem in order to maximize biomass production and minimize the reactions whose enzymes that catalyze them may have undergone mutations (oncometabolite), causing cancer cells to proliferate. This study discovered characteristic pathological patterns for the breast cancer genome-scale model used. This work presents an in silico BioCAD methodology to investigate and compare the metabolic pathways of breast tissue in the presence of a tumor in contrast to those of healthy tissue. A large number of genome-scale metabolic model simulations have been carried out to explore the solution spaces of genetic configurations and metabolic reactions. An evolutionary algorithm is employed to guide the search for possible solutions, and a multi-objective optimization principle is used to identify the best candidate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amaradio, M.N., Ojha, V., Jansen, G., Gulisano, M., Costanza, J., Nicosia, G.: Pareto optimal metabolic engineering for the growth-coupled overproduction of sustainable chemicals. Biotechnol. Bioeng. 119(7), 1890–1902 (2022)

    Article  Google Scholar 

  • Angione, C., Costanza, J., Carapezza, G., Lió, P., Nicosia, G.: A design automation framework for computational bioenergetics in biological networks. Mol. BioSyst. 9(10), 2554–2564 (2013)

    Article  MATH  Google Scholar 

  • Barzaman, K., et al.: Breast cancer: biology, biomarkers, and treatments. Int. Immunopharmacol. 84, 106535 (2020)

    Article  Google Scholar 

  • Biondi, T., Ciccazzo, A., Cutello, V., D’Antona, S., Nicosia, G., Spinella, S.: Multi-objective evolutionary algorithms and pattern search methods for circuit design problems. J. Univers. Comput. Sci. 12(4), 432–449 (2006)

    Google Scholar 

  • Chou, F.J., Liu, Y., Lang, F., Yang, C.: D-2-hydroxyglutarate in glioma biology. Cells 10(9), 2345 (2021)

    Article  Google Scholar 

  • Cutello, V., Lee, D., Leone, S., Nicosia, G., Pavone, M.: Clonal selection algorithm with dynamic population size for bimodal search spaces. In: Jiao, L., Wang, L., Gao, X.-b, Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 949–958. Springer, Heidelberg (2006). https://doi.org/10.1007/11881070_125

    Chapter  Google Scholar 

  • Cutello, V., Nicosia, G., Pavone, M., Stracquadanio, G.: An information-theoretic approach for clonal selection algorithms. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 144–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14547-6_12

    Chapter  Google Scholar 

  • DallaPozza, E., et al.: Regulation of succinate dehydrogenase and role of succinate in cancer. Semin. Cell Dev. Biol. 98, 4–14 (2020)

    Article  Google Scholar 

  • Ježek, P.: 2-Hydroxyglutarate in cancer cells. Antioxid. Redox Signal. 33(13), 903–926 (2020)

    Article  Google Scholar 

  • Katsura, C., Ogunmwonyi, I., Kankam, H.K., Saha, S.: Breast cancer: presentation, investigation, and management. Br. J. Hosp. Med. (London, England) 83(2), 1–7 (2005)

    Google Scholar 

  • Keller, M.A., Piedrafita, G., Ralser, M.: The widespread role of non-enzymatic reactions in cellular metabolism. Curr. Opin. Biotechnol. 34, 153–161 (2015)

    Article  Google Scholar 

  • King, Z.A., et al.: BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44(D1), D515–D522 (2016)

    Article  Google Scholar 

  • Hucka, M., et al.: The systems biology markup language (SBML): language specification for level 3 version 2 Core release 2. J. Integr. Bioinform. 16(2), 20190021 (2019)

    Article  Google Scholar 

  • Liu, Y., et al.: Targeting tumor suppressor genes for cancer therapy. BioEssays: News Rev. Mol. Cell. Dev. Biol. 37(12), 1277–1286 (2015)

    Article  Google Scholar 

  • Liu, S., Cadoux-Hudson, T., Schofield, C.J.: Isocitrate dehydrogenase variants in cancer - cellular consequences and therapeutic opportunities. Curr. Opin. Chem. Biol. 57, 122–134 (2020)

    Article  Google Scholar 

  • Mishra, P., Ambs, S.: Metabolic signatures of human breast cancer. Mol. Cell. Oncol. 2(3), e992217 (2015)

    Google Scholar 

  • Nam, H., et al.: A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLoS Comput. Biol. 10(9), e1003837 (2014)

    Article  Google Scholar 

  • Nicosia, G., Stracquadanio, G.: Generalized pattern search and mesh adaptive direct search algorithms for protein structure prediction. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS, vol. 4645, pp. 183–193. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74126-8_17

    Chapter  Google Scholar 

  • Norsigian, C.J., et al.: BiGG models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 48(D1), D402–D406 (2020)

    Google Scholar 

  • Orth, J., Thiele, I., Palsson, B.: What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010)

    Article  Google Scholar 

  • Patanè, A., Santoro, A., Costanza, J., Carapezza, G., Nicosia, G.: Pareto optimal design for synthetic biology. IEEE Trans. Biomed. Circuits Syst. 9(4), 555–571 (2015)

    Article  Google Scholar 

  • Patané, A., Jansen, G., Conca, P., Carapezza, G., Costanza, J., Nicosia, G.: Multi-objective optimization of genome-scale metabolic models: the case of ethanol production. Ann. Oper. Res. 276(1–2), 211–227 (2018). https://doi.org/10.1007/s10479-018-2865-4

    Article  MathSciNet  Google Scholar 

  • Peetsold, M., et al.: fumarase deficiency: a case with a new pathogenic mutation and a review of the literature. J. Child Neurol. 36(4), 310–323 (2021)

    Article  Google Scholar 

  • Rana, P., Berry, C., Ghosh, P., Fong, S.S.: Recent advances on constraint-based models by integrating machine learning. Curr. Opin. Biotechnol. 64, 85–91 (2020)

    Article  Google Scholar 

  • Sharifi, M.R., Akbarifard, S., Qaderi, K., Madadi, M.R.: A new optimization algorithm to solve multi-objective problems. Sci. Rep. 11(1), 20326 (2021)

    Article  Google Scholar 

  • Schmidt, C., Sciacovelli, M., Frezza, C.: Fumarate hydratase in cancer: a multifaceted tumor suppressor. Semin. Cell Dev. Biol. 98, 15–25 (2020)

    Article  Google Scholar 

  • Umeton, R., Nicosia, G., Dewey, C.F.: OREMPdb: a semantic dictionary of computational pathway models. BMC Bioinform. 13(4), 1–9 (2012)

    Google Scholar 

  • Van Rosmalen, R.P., Smith, R.W., Martins Dos Santos, V.A.P., Fleck, C., Suarez-Diez, M.: Model reduction of genome-scale metabolic models as a basis for targeted kinetic models. Metab. Eng. 64, 74–84 (2021)

    Article  Google Scholar 

  • Vander Heiden, M.G.: Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10(9), 671–684 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Nicosia .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 6.
figure 6

Genome-scale metabolic model of breast cancer. A graphical representation of the S-matrix is presented, in which on the x-axis are the reactions, and on the y-axis are the metabolites. Each point on the S matrix represents values of S other than 0.

Fig. 7.
figure 7

Control test for the breast genome-scale metabolic model. The fluxes of all reactions are minimized while maximizing the biomass. Circles indicate the non-dominated points of the Pareto front; all other candidate solutions are the feasible points.

Fig. 8.
figure 8

Breast genome-scale metabolic model. Minimization of the sum of flows for the reactions considered while maximizing the biomass. Circles indicate the non-dominated points of the Pareto front; all other candidate solutions are the feasible points.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amaradio, M.N., Jansen, G., Ojha, V., Costanza, J., Di Fatta, G., Nicosia, G. (2023). Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25599-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25598-4

  • Online ISBN: 978-3-031-25599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics