Abstract
In this research work a large set of the classical numerical functions were taken into account in order to understand both the search capability and the ability to escape from a local optimal of a clonal selection algorithm, called i-CSA. The algorithm was extensively compared against several variants of Differential Evolution (DE) algorithm, and with some typical swarm intelligence algorithms. The obtained results show as i-CSA is effective in terms of accuracy, and it is able to solve large-scale instances of well-known benchmarks. Experimental results also indicate that the algorithm is comparable, and often outperforms, the compared nature-inspired approaches. From the experimental results, it is possible to note that a longer maturation of a B cell, inside the population, assures the achievement of better solutions; the maturation period affects the diversity and the effectiveness of the immune search process on a specific problem instance. To assess the learning capability during the evolution of the algorithm three different relative entropies were used: Kullback-Leibler, Rényi generalized and Von Neumann divergences. The adopted entropic divergences show a strong correlation between optima discovering, and high relative entropy values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoretical Computer Science 403(1), 11–32 (2008)
Smith, S., Timmis, J.: An Immune Network Inspired Evolutionary Algorithm for the Diagnosis of Parkinsons Disease. Biosystems 94(1-2), 34–46 (2008)
Timmis, J., Hart, E., Hone, A., Neal, M., Robins, A., Stepney, S., Tyrrell, A.: Immuno-Engineering. In: Proc. of the international conference on Biologically Inspired Collaborative Computing (IFIP 2009), vol. 268, pp. 3–17. IEEE Press, Los Alamitos (2008)
Dasgupta, D., Niño, F.: Immunological Computation: Theory and Applications. CRC Press, Boca Raton (in press)
Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE Trans. on Evolutionary Computation 11(1), 101–117 (2007)
Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. Journal of Combinatorial Optimization 14(1), 9–33 (2007)
Yao, X., Liu, Y., Lin, G.M.: Evolutionary programming made faster. IEEE Trans. on Evolutionary Computation 3(2), 82–102 (1999)
Cutello, V., Nicosia, G., Pavone, M., Narzisi, G.: Real Coded Clonal Selection Algorithm for Unconstrained Global Numerical Optimization using a Hybrid Inversely Proportional Hypermutation Operator. In: Proc. of the 21st Annual ACM Symposium on Applied Computing (SAC 2006), vol. 2, pp. 950–954 (2006)
Cutello, V., Krasnogor, N., Nicosia, G., Pavone, M.: Immune Algorithm versus Differential Evolution: A Comparative Case Study Using High Dimensional Function Optimization. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 93–101. Springer, Heidelberg (2007)
Karaboga, D., Baturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459–471 (2007)
Castrogiovanni, M., Nicosia, G., Rascuná, R.: Experimental Analysis of the Aging Operator for Static and Dynamic Optimisation Problems. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 804–811. Springer, Heidelberg (2007)
Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: a characterization of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)
Cutello, V., Nicosia, G., Pavone, M.: An Immune Algorithm with Hyper-Macromutations for the Dill’s 2D Hydrophobic-Hydrophilic Model. In: Proc. of Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 1074–1080. IEEE Press, Los Alamitos (2004)
Cutello, V., Nicosia, G., Pavone, M.: A Hybrid Immune Algorithm with Information Gain for the Graph Coloring Problem. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 171–182. Springer, Heidelberg (2003)
Shannon, C.E.: A Mathematical Theory of Communication. In: Congress on Evolutionary Computation, vol. 1, pp. 1074–1080. IEEE Press, Los Alamitos (2004); Bell System Technical Journal 27, 379–423, 623–656 (1948)
Kullback, S.: Statistics and Information Theory. J. Wiley and Sons, New York (1959)
Jaynes, E.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)
Rényi, A.: On measures of information and entropy. In: Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1961)
Kopp, A., Jia, X., Chakravarty, S.: Replacing energy by von Neumann entropy in quantum phase transitions. Annals of Physics 322(6), 1466–1476 (2007)
Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal Selection Algorithms: A Comparative Case Study using Effective Mutation Potentials. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 13–28. Springer, Heidelberg (2005)
Versterstrøom, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In: Congress on Evolutionary Computing (CEC 2004), vol. 1, pp. 1980–1987 (2004)
Noman, N., Iba, H.: Enhancing Differential Evolution Performance with Local Search for High Dimensional Function Optimization. In: Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 967–974 (2005)
Storn, R., Price, K.V.: Differential Evolution a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)
Price, K.V., Storn, M., Lampien, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)
Mezura–Montes, E., Velázquez–Reyes, J., Coello Coello, C.: A Comparative Study of Differential Evolution Variants for Global Optimization. In: Genetic and Evolutionary Computation Conference (GECCO 2006), vol. 1, pp. 485–492 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cutello, V., Nicosia, G., Pavone, M., Stracquadanio, G. (2010). An Information-Theoretic Approach for Clonal Selection Algorithms . In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds) Artificial Immune Systems. ICARIS 2010. Lecture Notes in Computer Science, vol 6209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14547-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-14547-6_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14546-9
Online ISBN: 978-3-642-14547-6
eBook Packages: Computer ScienceComputer Science (R0)