Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Information-Theoretic Approach for Clonal Selection Algorithms

  • Conference paper
Artificial Immune Systems (ICARIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6209))

Included in the following conference series:

Abstract

In this research work a large set of the classical numerical functions were taken into account in order to understand both the search capability and the ability to escape from a local optimal of a clonal selection algorithm, called i-CSA. The algorithm was extensively compared against several variants of Differential Evolution (DE) algorithm, and with some typical swarm intelligence algorithms. The obtained results show as i-CSA is effective in terms of accuracy, and it is able to solve large-scale instances of well-known benchmarks. Experimental results also indicate that the algorithm is comparable, and often outperforms, the compared nature-inspired approaches. From the experimental results, it is possible to note that a longer maturation of a B cell, inside the population, assures the achievement of better solutions; the maturation period affects the diversity and the effectiveness of the immune search process on a specific problem instance. To assess the learning capability during the evolution of the algorithm three different relative entropies were used: Kullback-Leibler, Rényi generalized and Von Neumann divergences. The adopted entropic divergences show a strong correlation between optima discovering, and high relative entropy values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoretical Computer Science 403(1), 11–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Smith, S., Timmis, J.: An Immune Network Inspired Evolutionary Algorithm for the Diagnosis of Parkinsons Disease. Biosystems 94(1-2), 34–46 (2008)

    Article  Google Scholar 

  3. Timmis, J., Hart, E., Hone, A., Neal, M., Robins, A., Stepney, S., Tyrrell, A.: Immuno-Engineering. In: Proc. of the international conference on Biologically Inspired Collaborative Computing (IFIP 2009), vol. 268, pp. 3–17. IEEE Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  4. Dasgupta, D., Niño, F.: Immunological Computation: Theory and Applications. CRC Press, Boca Raton (in press)

    Google Scholar 

  5. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE Trans. on Evolutionary Computation 11(1), 101–117 (2007)

    Article  Google Scholar 

  6. Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. Journal of Combinatorial Optimization 14(1), 9–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Yao, X., Liu, Y., Lin, G.M.: Evolutionary programming made faster. IEEE Trans. on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

  8. Cutello, V., Nicosia, G., Pavone, M., Narzisi, G.: Real Coded Clonal Selection Algorithm for Unconstrained Global Numerical Optimization using a Hybrid Inversely Proportional Hypermutation Operator. In: Proc. of the 21st Annual ACM Symposium on Applied Computing (SAC 2006), vol. 2, pp. 950–954 (2006)

    Google Scholar 

  9. Cutello, V., Krasnogor, N., Nicosia, G., Pavone, M.: Immune Algorithm versus Differential Evolution: A Comparative Case Study Using High Dimensional Function Optimization. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 93–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Karaboga, D., Baturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459–471 (2007)

    Article  MATH  Google Scholar 

  11. Castrogiovanni, M., Nicosia, G., Rascuná, R.: Experimental Analysis of the Aging Operator for Static and Dynamic Optimisation Problems. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 804–811. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: a characterization of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)

    Google Scholar 

  13. Cutello, V., Nicosia, G., Pavone, M.: An Immune Algorithm with Hyper-Macromutations for the Dill’s 2D Hydrophobic-Hydrophilic Model. In: Proc. of Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 1074–1080. IEEE Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  14. Cutello, V., Nicosia, G., Pavone, M.: A Hybrid Immune Algorithm with Information Gain for the Graph Coloring Problem. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 171–182. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Shannon, C.E.: A Mathematical Theory of Communication. In: Congress on Evolutionary Computation, vol. 1, pp. 1074–1080. IEEE Press, Los Alamitos (2004); Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Google Scholar 

  16. Kullback, S.: Statistics and Information Theory. J. Wiley and Sons, New York (1959)

    MATH  Google Scholar 

  17. Jaynes, E.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Rényi, A.: On measures of information and entropy. In: Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1961)

    Google Scholar 

  19. Kopp, A., Jia, X., Chakravarty, S.: Replacing energy by von Neumann entropy in quantum phase transitions. Annals of Physics 322(6), 1466–1476 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal Selection Algorithms: A Comparative Case Study using Effective Mutation Potentials. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 13–28. Springer, Heidelberg (2005)

    Google Scholar 

  21. Versterstrøom, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In: Congress on Evolutionary Computing (CEC 2004), vol. 1, pp. 1980–1987 (2004)

    Google Scholar 

  22. Noman, N., Iba, H.: Enhancing Differential Evolution Performance with Local Search for High Dimensional Function Optimization. In: Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 967–974 (2005)

    Google Scholar 

  23. Storn, R., Price, K.V.: Differential Evolution a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Price, K.V., Storn, M., Lampien, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  25. Mezura–Montes, E., Velázquez–Reyes, J., Coello Coello, C.: A Comparative Study of Differential Evolution Variants for Global Optimization. In: Genetic and Evolutionary Computation Conference (GECCO 2006), vol. 1, pp. 485–492 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cutello, V., Nicosia, G., Pavone, M., Stracquadanio, G. (2010). An Information-Theoretic Approach for Clonal Selection Algorithms . In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds) Artificial Immune Systems. ICARIS 2010. Lecture Notes in Computer Science, vol 6209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14547-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14547-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14546-9

  • Online ISBN: 978-3-642-14547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics