Abstract
The quantity of tomatoes is closely related to their yield information, and a powerful inspection robot that can automatically count tomatoes is urgently necessary for the hot and harsh environment of greenhouses. With the continuous progress of computer vision technology, the use of deep learning algorithms for counting tomatoes can greatly improve the inspection speed of the inspection robot. This paper propose a tomato fruit counting method for greenhouse inspection robots, which tracks the position of tomatoes in the image by the spatial displacement information of the robot, while 3D depth filtering can effectively avoid the interference of background tomatoes on the counting. The main advantages of this method are: (1) it can realize the tracking of bunched fruits and the counting of single fruits at the same time; (2) it can avoid the interference of background tomatoes. The experimental results of the greenhouse showed that the accuracy rates of bunch and single fruit counting were higher than 84% and 86% respectively, which greatly improved the inspection speed compared with manual counting and basically meet the counting requirements of the current greenhouse.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yangyang, Z., Jianlei, K., Xuebo, J., et al.: Crop deep: the crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 19(5), 1058 (2019)
Tian, H., Tianhai, W., Yadong, L., et al.: Computer vision technology in agricultural automation—a review. Inf. Process. Agri. 7(1), 1–19 (2020)
Bargoti, S., Underwood, J.P.: Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34(6), 1039–1060 (2017)
Liu, X., Chen, S.W., Aditya, S., et al.: Robust fruit counting: combining deep learning, tracking, and structure from motion. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1045–1052(2018)
Ramos, P.J., Prieto, F.A., Montoya, E.C., et al.: Automatic fruit count on coffee branches using computer vision. Comput. Electron. Agric. 137, 9–22 (2017)
Häni, N., Roy, P., Isler, V.: A comparative study of fruit detection and counting methods for yield mapping in apple orchards. J. Field Robot. 37(2), 263–282 (2020)
Afonso, M., Fonteijn, H., Fiorentin, F. S., et al.: Tomato fruit detection and counting in greenhouses using deep learning. Front. Plant Sci. 1759 (2020)
Kirk, R., Mangan, M., Cielniak, G.: Robust counting of soft fruit through occlusions with re-identification. In: Vincze, M., Patten, T., Christensen, H.I., Nalpantidis, L., Liu, M. (eds.) Computer Vision Systems. ICVS 2021. LNCS, vol. 12899, pp. 211–222 (2021). https://doi.org/10.1007/978-3-030-87156-7_17
Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Jiang, B., Luo, R., Mao, J., et al.: Acquisition of localization confidence for accurate object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 784–799 (2018)
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649 (2017)
Funding
This research was fundeded by National Key Research and Development Program of China (2017YFD0701502).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dai, G., Hu, L., Wang, P., Rong, J. (2022). Tracking and Counting Method for Tomato Fruits Scouting Robot in Greenhouse. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-13844-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13843-0
Online ISBN: 978-3-031-13844-7
eBook Packages: Computer ScienceComputer Science (R0)