Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Counting of Soft Fruit Through Occlusions with Re-identification

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2021)

Abstract

Fruit counting and tracking is a crucial component of fruit harvesting and yield forecasting applications within horticulture. We present a novel multi-object, multi-class fruit tracking system to count fruit from image sequences. We first train a recurrent neural network (RNN) comprised of a feature extractor stem and two heads for re-identification and maturity classification. We apply the network to detected fruits in image sequences and utilise the output of both network heads to maintain track consistency and reduce intra-class false positives between maturity stages. The counting-by-tracking system is evaluated by comparing with a popular detect-to-track architecture and against manually labelled tracks (counts). Our proposed system achieves a mean average percentage error (MAPE) of 3% (L1 loss = 7) improving on the baseline multi-object tracking approach which obtained an MAPE of 21% (L1 loss = 41). Validating this approach for use in horticulture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellocchio, E., Ciarfuglia, T.A., Costante, G., Valigi, P.: Weakly supervised fruit counting for yield estimation using spatial consistency. IEEE Robot. Autom. Lett. 4(3), 2348–2355 (2019). https://doi.org/10.1109/LRA.2019.2903260

    Article  Google Scholar 

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. CoRR abs/1602.00763 (2016). http://arxiv.org/abs/1602.00763

  3. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, Lecce, Italy, August 2017. http://elvera.nue.tu-berlin.de/files/1517Bochinski2017.pdf

  4. Chen, S.W., et al.: Counting apples and oranges with deep learning: a data-driven approach. IEEE Robot. Autom. Lett. 2(2), 781–788 (2017). https://doi.org/10.1109/LRA.2017.2651944

    Article  Google Scholar 

  5. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524 (2013). http://arxiv.org/abs/1311.2524

  6. Grimstad, L., From, P.J.: The Thorvald II agricultural robotic system. Robotics 6(4) (2017). https://doi.org/10.3390/robotics6040024. https://www.mdpi.com/2218-6581/6/4/24

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  8. Kirk, R., Cielniak, G., Mangan, M.: L*a*b*fruits: a rapid and robust outdoor fruit detection system combining bio-inspired features with one-stage deep learning networks. Sensors 20(1) (2020). https://doi.org/10.3390/s20010275. https://www.mdpi.com/1424-8220/20/1/275

  9. Leal-Taixé, L., Milan, A., Schindler, K., Cremers, D., Reid, I.D., Roth, S.: Tracking the trackers: an analysis of the state of the art in multiple object tracking. CoRR abs/1704.02781 (2017). http://arxiv.org/abs/1704.02781

  10. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR abs/1708.02002 (2017). http://arxiv.org/abs/1708.02002

  11. Liu, X., et al.: Monocular camera based fruit counting and mapping with semantic data association. IEEE Robot. Autom. Lett. 4(3), 2296–2303 (2019). https://doi.org/10.1109/LRA.2019.2901987

    Article  Google Scholar 

  12. Liu, X., et al.: Robust fruit counting: combining deep learning, tracking, and structure from motion. CoRR abs/1804.00307 (2018). http://arxiv.org/abs/1804.00307

  13. Mekhalfi, M.L., et al.: Vision system for automatic on-tree kiwifruit counting and yield estimation. Sensors 20(15) (2020). https://doi.org/10.3390/s20154214. https://www.mdpi.com/1424-8220/20/15/4214

  14. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv:1603.00831 [cs], March 2016

  15. Ning, G., Zhang, Z., Huang, C., He, Z., Ren, X., Wang, H.: Spatially supervised recurrent convolutional neural networks for visual object tracking. CoRR abs/1607.05781 (2016). http://arxiv.org/abs/1607.05781

  16. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018). http://arxiv.org/abs/1804.02767

  17. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497

  18. Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170, 105247 (2020). https://doi.org/10.1016/j.compag.2020.105247. https://www.sciencedirect.com/science/article/pii/S0168169919315765

  19. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. CoRR abs/1703.07402 (2017). http://arxiv.org/abs/1703.07402

Download references

Acknowledgement

This work was partially funded by the RASberry project at the University of Lincoln in affiliation with the Collaborative Training Partnershipfor Fruit Crop Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Kirk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirk, R., Mangan, M., Cielniak, G. (2021). Robust Counting of Soft Fruit Through Occlusions with Re-identification. In: Vincze, M., Patten, T., Christensen, H.I., Nalpantidis, L., Liu, M. (eds) Computer Vision Systems. ICVS 2021. Lecture Notes in Computer Science(), vol 12899. Springer, Cham. https://doi.org/10.1007/978-3-030-87156-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87156-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87155-0

  • Online ISBN: 978-3-030-87156-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics