Abstract
Predicting human motion is critical for assistive robots and AR/VR applications, where the interaction with humans needs to be safe and comfortable. Meanwhile, an accurate prediction depends on understanding both the scene context and human intentions. Even though many works study scene-aware human motion prediction, the latter is largely underexplored due to the lack of ego-centric views that disclose human intent and the limited diversity in motion and scenes. To reduce the gap, we propose a large-scale human motion dataset that delivers high-quality body pose sequences, scene scans, as well as ego-centric views with the eye gaze that serves as a surrogate for inferring human intent. By employing inertial sensors for motion capture, our data collection is not tied to specific scenes, which further boosts the motion dynamics observed from our subjects. We perform an extensive study of the benefits of leveraging the eye gaze for ego-centric human motion prediction with various state-of-the-art architectures. Moreover, to realize the full potential of the gaze, we propose a novel network architecture that enables bidirectional communication between the gaze and motion branches. Our network achieves the top performance in human motion prediction on the proposed dataset, thanks to the intent information from eye gaze and the denoised gaze feature modulated by the motion. Code and data can be found at https://github.com/y-zheng18/GIMO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Admoni, H., Scassellati, B.: Social eye gaze in human-robot interaction: a review. J. Hum.-Robot Interact. 6(1), 25–63 (2017)
Aksan, E., Kaufmann, M., Cao, P., Hilliges, O.: A spatio-temporal transformer for 3D human motion prediction. In: 2021 International Conference on 3D Vision (3DV), pp. 565–574. IEEE (2021)
Aksan, E., Kaufmann, M., Hilliges, O.: Structured prediction helps 3D human motion modelling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7144–7153 (2019)
Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23
CMU Graphics Lab (2000). http://mocap.cs.cmu.edu/
Duarte, N.F., Raković, M., Tasevski, J., Coco, M.I., Billard, A., Santos-Victor, J.: Action anticipation: reading the intentions of humans and robots. IEEE Robot. Autom. Lett. 3(4), 4132–4139 (2018)
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4346–4354 (2015)
Gottlieb, J., Oudeyer, P.Y., Lopes, M., Baranes, A.: Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn. Sci. 17(11), 585–593 (2013)
Guzov, V., Mir, A., Sattler, T., Pons-Moll, G.: Human poseitioning system (HPS): 3D human pose estimation and self-localization in large scenes from body-mounted sensors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4318–4329 (2021)
Hassan, M., et al.: Stochastic scene-aware motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11374–11384 (2021)
Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2282–2292 (2019)
Hossain, M.R.I., Little, J.J.: Exploiting temporal information for 3D human pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 68–84 (2018)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Jaegle, A., et al.: Perceiver IO: a general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795 (2021)
Jiang, H., Grauman, K.: Seeing invisible poses: estimating 3D body pose from egocentric video. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3501–3509. IEEE (2017)
Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3334–3342 (2015)
Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8320–8329 (2018)
Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)
Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: Pare: part attention regressor for 3D human body estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11127–11137 (2021)
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2252–2261 (2019)
Kratzer, P., Bihlmaier, S., Midlagajni, N.B., Prakash, R., Toussaint, M., Mainprice, J.: Mogaze: a dataset of full-body motions that includes workspace geometry and eye-gaze. IEEE Robot. Autom. Lett. 6(2), 367–373 (2020)
Kratzer, P., Toussaint, M., Mainprice, J.: Prediction of human full-body movements with motion optimization and recurrent neural networks. In: 2020 ICRA, pp. 1792–1798 (2020)
Li, J., et al.: Task-generic hierarchical human motion prior using VAEs. In: 2021 International Conference on 3D Vision (3DV), pp. 771–781. IEEE (2021)
Li, J., et al.: Learning to generate diverse dance motions with transformer. arXiv preprint arXiv:2008.08171 (2020)
Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13401–13412 (2021)
Li, Y., Liu, M., Rehg, J.: In the eye of the beholder: gaze and actions in first person video. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Li, Z., Zhou, Y., Xiao, S., He, C., Huang, Z., Li, H.: Auto-conditioned recurrent networks for extended complex human motion synthesis. arXiv preprint arXiv:1707.05363 (2017)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)
Luo, Z., Golestaneh, S.A., Kitani, K.M.: 3D human motion estimation via motion compression and refinement. In: Proceedings of the Asian Conference on Computer Vision (2020)
Luo, Z., Hachiuma, R., Yuan, Y., Kitani, K.: Dynamics-regulated kinematic policy for egocentric pose estimation. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: Amass: archive of motion capture as surface shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5442–5451 (2019)
Mao, W., Liu, M., Salzmann, M.: History repeats itself: human motion prediction via motion attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 474–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_28
von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)
Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2891–2900 (2017)
Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (POTR): human motion prediction with non-autoregressive transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2276–2284 (2021)
Ng, E., Xiang, D., Joo, H., Grauman, K.: You2me: inferring body pose in egocentric video via first and second person interactions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9890–9900 (2020)
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10975–10985 (2019)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: Humor: 3D human motion model for robust pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11488–11499 (2021)
Rhodin, H., et al.: Egocap: egocentric marker-less motion capture with two fisheye cameras. ACM Trans. Graph. (TOG) 35(6), 1–11 (2016)
Tatler, B.W., Hayhoe, M.M., Land, M.F., Ballard, D.H.: Eye guidance in natural vision: reinterpreting salience. J. Vis. 11(5) (2011)
Tian, Y., Zhang, H., Liu, Y., Wang, l.: Recovering 3D human mesh from monocular images: a survey. arXiv preprint arXiv:2203.01923 (2022)
Tome, D., et al.: Selfpose: 3D egocentric pose estimation from a headset mounted camera. arXiv preprint arXiv:2011.01519 (2020)
Tome, D., Peluse, P., Agapito, L., Badino, H.: xR-EgoPose: egocentric 3D human pose from an HMD camera. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7728–7738 (2019)
Ungureanu, D., et al.: Hololens 2 research mode as a tool for computer vision research. arXiv preprint arXiv:2008.11239 (2020)
Valle-Pérez, G., Henter, G.E., Beskow, J., Holzapfel, A., Oudeyer, P.Y., Alexanderson, S.: Transflower: probabilistic autoregressive dance generation with multimodal attention. ACM Trans. Graph. (TOG) 40(6), 1–14 (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Von Marcard, T., Pons-Moll, G., Rosenhahn, B.: Human pose estimation from video and IMUs. IEEE Trans. Pattern Anal. Mach. Intell. 38(8), 1533–1547 (2016)
Wang, J., Liu, L., Xu, W., Sarkar, K., Theobalt, C.: Estimating egocentric 3D human pose in global space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11500–11509 (2021)
Wang, J., Xu, H., Xu, J., Liu, S., Wang, X.: Synthesizing long-term 3D human motion and interaction in 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9401–9411 (2021)
Wei, P., Liu, Y., Shu, T., Zheng, N., Zhu, S.C.: Where and why are they looking? Jointly inferring human attention and intentions in complex tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6801–6809 (2018)
Xu, W., et al.: Mo2cap2: real-time mobile 3D motion capture with a cap-mounted fisheye camera. IEEE Trans. Visual Comput. Graphics 25(5), 2093–2101 (2019)
Yuan, Y., Kitani, K.: 3D ego-pose estimation via imitation learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 735–750 (2018)
Yuan, Y., Kitani, K.: Ego-pose estimation and forecasting as real-time PD control. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10082–10092 (2019)
Zhang, H., et al.: PyMAF: 3D human pose and shape regression with pyramidal mesh alignment feedback loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)
Zhang, S., et al.: Egobody: human body shape, motion and social interactions from head-mounted devices. arXiv preprint arXiv:2112.07642 (2021)
Zhang, S., Zhang, Y., Bogo, F., Marc, P., Tang, S.: Learning motion priors for 4D human body capture in 3d scenes. In: International Conference on Computer Vision (ICCV), October 2021
Zhang, S., Zhang, Y., Bogo, F., Pollefeys, M., Tang, S.: Learning motion priors for 4D human body capture in 3D scenes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11343–11353 (2021)
Zhang, S., Zhang, Y., Ma, Q., Black, M.J., Tang, S.: Place: proximity learning of articulation and contact in 3D environments. In: 2020 International Conference on 3D Vision (3DV), pp. 642–651. IEEE (2020)
Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: predicting how 3D bodies move. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3372–3382 (2021)
Zhang, Y., Hassan, M., Neumann, H., Black, M.J., Tang, S.: Generating 3D people in scenes without people. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6194–6204 (2020)
Zhang, Y., Tang, S.: The wanderings of odysseus in 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20481–20491 (2022)
Acknowledgments
The authors are supported by a grant from the Stanford HAI Institute, a Vannevar Bush Faculty Fellowship, a gift from the Amazon Research Awards program, the NSFC grant No. 62125107, and No. 62171255. Also, Toyota Research Institute provided funds to support this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, Y. et al. (2022). GIMO: Gaze-Informed Human Motion Prediction in Context. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-19778-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19777-2
Online ISBN: 978-3-031-19778-9
eBook Packages: Computer ScienceComputer Science (R0)