Nothing Special   »   [go: up one dir, main page]

Skip to main content

Long-Term Human Motion Prediction with Scene Context

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

Human movement is goal-directed and influenced by the spatial layout of the objects in the scene. To plan future human motion, it is crucial to perceive the environment – imagine how hard it is to navigate a new room with lights off. Existing works on predicting human motion do not pay attention to the scene context and thus struggle in long-term prediction. In this work, we propose a novel three-stage framework that exploits scene context to tackle this task. Given a single scene image and 2D pose histories, our method first samples multiple human motion goals, then plans 3D human paths towards each goal, and finally predicts 3D human pose sequences following each path. For stable training and rigorous evaluation, we contribute a synthetic dataset with clean annotations. In both synthetic and real datasets, our method shows consistent quantitative and qualitative improvements over existing methods. Project page: https://people.eecs.berkeley.edu/~zhecao/hmp/index.html (Please refer to our arXiv for a longer version of the paper with more visualizations.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We choose to represent the scene by RGB images rather than RGBD scans because they are more readily available in many practical applications.

  2. 2.

    Dataset available in https://github.com/ZheC/GTA-IM-Dataset

References

  1. CMU Motion Capture Database. http://mocap.cs.cmu.edu

  2. Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Nonrigid structure from motion in trajectory space. In: NIPS (2009)

    Google Scholar 

  3. Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.: Bilinear spatiotemporal basis models. SIGGRAPH (2012)

    Google Scholar 

  4. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: CVPR (2016)

    Google Scholar 

  5. Alahi, A., Ramanathan, V., Fei-Fei, L.: Socially-aware large-scale crowd forecasting. In: CVPR (2014)

    Google Scholar 

  6. Alexopoulos, C., Griffin, P.M.: Path planning for a mobile robot. IEEE Trans. Syst. Man Cybern. (1992)

    Google Scholar 

  7. Brand, M., Hertzmann, A.: Style machines. SIGGRAPH (2000)

    Google Scholar 

  8. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. In: CoRL (2019)

    Google Scholar 

  9. Chao, Y.W., Yang, J., Price, B., Cohen, S., Deng, J.: Forecasting human dynamics from static images. In: CVPR (2017)

    Google Scholar 

  10. Chen, Y., Huang, S., Yuan, T., Qi, S., Zhu, Y., Zhu, S.C.: Holistic++ scene understanding: single-view 3D holistic scene parsing and human pose estimation with human-object interaction and physical commonsense. In: ICCV (2019)

    Google Scholar 

  11. Chiu, H.K., Adeli, E., Wang, B., Huang, D.A., Niebles, J.C.: Action-agnostic human pose forecasting. In: WACV (2019)

    Google Scholar 

  12. Elhayek, A., Stoll, C., Hasler, N., Kim, K.I., Seidel, H.P., Theobalt, C.: Spatio-temporal motion tracking with unsynchronized cameras. In: CVPR (2012)

    Google Scholar 

  13. Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., Cucchiara, R.: Learning to detect and track visible and occluded body joints in a virtual world. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 450–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_27

    Chapter  Google Scholar 

  14. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: ICCV (2015)

    Google Scholar 

  15. Ghosh, P., Song, J., Aksan, E., Hilliges, O.: Learning human motion models for long-term predictions. In: 3DV (2017)

    Google Scholar 

  16. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  17. Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: ICCV (2019)

    Google Scholar 

  18. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E (1995)

    Google Scholar 

  19. Hernandez, A., Gall, J., Moreno-Noguer, F.: Human motion prediction via spatio-temporal inpainting. In: CVPR (2019)

    Google Scholar 

  20. Holden, D., Saito, J., Komura, T., Joyce, T.: Learning motion manifolds with convolutional autoencoders. In: SIGGRAPH Asian Technical Briefs (2015)

    Google Scholar 

  21. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. TPAMI (2013)

    Google Scholar 

  22. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: CVPR (2016)

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ICLR (2014)

    Google Scholar 

  24. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15

    Chapter  Google Scholar 

  25. Krähenbühl, P.: Free supervision from video games. In: CVPR (2018)

    Google Scholar 

  26. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  27. Law, H., Teng, Y., Russakovsky, O., Deng, J.: CornerNet-Lite: efficient keypoint based object detection. arXiv preprint arXiv:1904.08900 (2019)

  28. Lee, D., Liu, S., Gu, J., Liu, M.Y., Yang, M.H., Kautz, J.: Context-aware synthesis and placement of object instances. In: NIPS (2018)

    Google Scholar 

  29. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: CGF (2007)

    Google Scholar 

  30. Li, C., Zhang, Z., Sun Lee, W., Hee Lee, G.: Convolutional sequence to sequence model for human dynamics. In: CVPR (2018)

    Google Scholar 

  31. Li, X., Liu, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Putting humans in a scene: learning affordance in 3D indoor environments. In: CVPR (2019)

    Google Scholar 

  32. Li, Z., Zhou, Y., Xiao, S., He, C., Huang, Z., Li, H.: Auto-conditioned recurrent networks for extended complex human motion synthesis. In: ICLR (2018)

    Google Scholar 

  33. Ma, W.C., Huang, D.A., Lee, N., Kitani, K.M.: Forecasting interactive dynamics of pedestrians with fictitious play. In: CVPR (2017)

    Google Scholar 

  34. Makansi, O., Ilg, E., Cicek, O., Brox, T.: Overcoming limitations of mixture density networks: a sampling and fitting framework for multimodal future prediction. In: CVPR (2019)

    Google Scholar 

  35. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37

    Chapter  Google Scholar 

  36. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: CVPR (2017)

    Google Scholar 

  37. Monszpart, A., Guerrero, P., Ceylan, D., Yumer, E., Mitra, N.J.: iMapper: interaction-guided joint scene and human motion mapping from monocular videos. SIGGRAPH (2019)

    Google Scholar 

  38. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  39. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  40. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: CVPR (2019)

    Google Scholar 

  41. Pavllo, D., Grangier, D., Auli, M.: QuaterNet: a quaternion-based recurrent model for human motion. In: BMVC (2018)

    Google Scholar 

  42. Pavlovic, V., Rehg, J.M., MacCormick, J.: Learning switching linear models of human motion. In: NIPS (2001)

    Google Scholar 

  43. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: CVPR (2009)

    Google Scholar 

  44. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. In: CVPR (2019)

    Google Scholar 

  45. Savva, M., Chang, A.X., Hanrahan, P., Fisher, M., Nießner, M.: PiGraphs: Learning Interaction Snapshots from Observations. TOG (2016)

    Google Scholar 

  46. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  47. Tai, L., Zhang, J., Liu, M., Burgard, W.: Socially compliant navigation through raw depth inputs with generative adversarial imitation learning. In: ICRA (2018)

    Google Scholar 

  48. Tay, M.K.C., Laugier, C.: Modelling smooth paths using gaussian processes. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics, pp. 381–390. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-75404-6_36

    Chapter  Google Scholar 

  49. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. TOG (2006)

    Google Scholar 

  50. Urtasun, R., Fleet, D.J., Geiger, A., Popović, J., Darrell, T.J., Lawrence, N.D.: Topologically-constrained latent variable models. In: ICML (2008)

    Google Scholar 

  51. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  52. Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., Lee, H.: Learning to generate long-term future via hierarchical prediction. In: ICML (2017)

    Google Scholar 

  53. Vo, M., Narasimhan, S.G., Sheikh, Y.: Spatiotemporal bundle adjustment for dynamic 3D reconstruction. In: CVPR (2016)

    Google Scholar 

  54. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: video forecasting by generating pose futures. In: CVPR (2017)

    Google Scholar 

  55. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. TPAMI (2007)

    Google Scholar 

  56. Wang, J.M., Fleet, D.J., Hertzmann, A.: Multifactor gaussian process models for style-content separation. In: ICML (2007)

    Google Scholar 

  57. Wang, X., Girdhar, R., Gupta, A.: Binge watching: scaling affordance learning from sitcoms. In: CVPR (2017)

    Google Scholar 

  58. Wang, Z., Chen, L., Rathore, S., Shin, D., Fowlkes, C.: Geometric pose affordance: 3D human pose with scene constraints. arXiv preprint arXiv:1905.07718 (2019)

  59. Wang, Z., Shin, D., Fowlkes, C.C.: Predicting camera viewpoint improves cross-dataset generalization for 3d human pose estimation. arXiv preprint arXiv:2004.03143 (2020)

  60. Wei, M., Miaomiao, L., Mathieu, S., Hongdong, L.: Learning trajectory dependencies for human motion prediction. In: ICCV (2019)

    Google Scholar 

  61. Weng, C.Y., Curless, B., Kemelmacher-Shlizerman, I.: Photo wake-up: 3D character animation from a single photo. In: CVPR (2019)

    Google Scholar 

  62. Yu, T., et al.: One-shot imitation from observing humans via domain-adaptive meta-learning. IROS (2018)

    Google Scholar 

  63. Zhang, J.Y., Felsen, P., Kanazawa, A., Malik, J.: Predicting 3D human dynamics from video. In: ICCV (2019)

    Google Scholar 

  64. Zhao, L., Peng, X., Tian, Yu., Kapadia, M., Metaxas, D.: Learning to forecast and refine residual motion for image-to-video generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 403–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_24

    Chapter  Google Scholar 

Download references

Ackownledgement

We thank Carsten Stoll and Christoph Lassner for the helpful feedback. We are also very grateful for the discussion within the BAIR community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Cao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2787 KB)

Supplementary material 2 (mp4 80700 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Z., Gao, H., Mangalam, K., Cai, QZ., Vo, M., Malik, J. (2020). Long-Term Human Motion Prediction with Scene Context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics