Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Data-driven Predictor of Ship Maneuvering Motion Under Varying Ocean Environments

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Practice (ISoLA 2022)

Abstract

Modern marine vessels operate increasingly autonomously, enabled by the strong interaction between data acquisition and analysis. The data-driven technology has been widely applied and significantly benefits maritime clusters by providing real-time predictions, optimizations, monitoring, controlling, improved decision-making, etc. While offshore engineering applications are usually operating in highly dynamic environments, which is an unavoidable obstacle when developing motion predictors. To this end, we propose an adaptive data-driven predictor aiming to supply decision support for vessels under varying ocean status. The predictor based on the Gaussian Process can decide whether and when to update itself from the assessment of external situations. By optimizing the ancient model with new observations, the adaptive model better fits the current situation, and efforts of re-training from scratch could be saved. Co-simulation, as an enabling tool, is utilized to simulate the dynamic ocean environments and ship maneuvers. Experimental results have demonstrated the effectiveness of the adaptive predictor, especially when unseen weather is encountered.

This work was supported by a grant from the Research Council of Norway through the Knowledge-Building Project for industry “Digital Twins for Vessel Life Cycle Service” (Project no: 270803).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allsop, T., Mason, A.J., Philpott, A.: Optimal sailing routes with uncertain weather. In: 35th Annual Conference of the Operations Research Society of New Zealand, pp. 65–74 (2000)

    Google Scholar 

  2. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/bf00994018

    Article  MATH  Google Scholar 

  4. Grossberg, S.: Nonlinear neural networks: principles, mechanisms, and architectures (1988). https://doi.org/10.1016/0893-6080(88)90021-4

  5. Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., Funaya, K.: Robust online time series prediction with recurrent neural networks. In: Proceedings - 3rd IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016, pp. 816–825. Institute of Electrical and Electronics Engineers Inc., December 2016. https://doi.org/10.1109/DSAA.2016.92

  6. Hatledal, L.I., Skulstad, R., Li, G., Styve, A., Zhang, H.: Co-simulation as a Fundamental Technology for twin ships. Model. Ident. Control 41(4), 297–311 (2020), https://doi.org/10.4173/MIC.2020.4.2, https://org.ntnu.no/intelligentsystemslab/project/

  7. Hatledal, L.I., Chu, Y., Styve, A., Zhang, H.: Vico: an entity-component-system based co-simulation framework. Simul. Model. Pract. Theory 108, 102243 (2021). https://doi.org/10.1016/j.simpat.2020.102243

    Article  Google Scholar 

  8. He, J., Mao, R., Shao, Z., Zhu, F.: Incremental learning in online scenario. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 13923–13932 (2020). https://doi.org/10.1109/CVPR42600.2020.01394

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network, March 2015. https://doi.org/10.48550/arxiv.1503.02531, arXiv:1503.02531v1

  10. Huang, B.G., Zou, Z.J., Ding, W.W.: Online prediction of ship roll motion based on a coarse and fine tuning fixed grid wavelet network. Ocean Eng. 160, 425–437 (2018). https://doi.org/10.1016/j.oceaneng.2018.04.065

    Article  Google Scholar 

  11. Lagerloef, G., Mitchum, G., Bonjean, F., Cheney, R.: OSCAR (Ocean surface currents analysis - real time): an operational resource for various maritime applications and El Niño monitoring in the tropical pacific using jason-1 data. In: AGU Fall Meeting Abstracts. vol. 2002, pp. OS51C-12 (2002). https://ui.adsabs.harvard.edu/abs/2002AGUFMOS51C..12L/abstract

  12. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Networks 17(6), 1411–1423 (2006). https://doi.org/10.1109/TNN.2006.880583

    Article  Google Scholar 

  13. Lin, Y.H.: The simulation of east-bound transoceanic voyages according to ocean-current sailing based on particle swarm optimization in the weather routing system. Mar. Struct. 59, 219–236 (2018). https://doi.org/10.1016/j.marstruc.2018.02.001

    Article  Google Scholar 

  14. Liu, J., Shi, G., Zhu, K.: Online multiple outputs least-squares support vector regression model of ship trajectory prediction based on automatic information system data and selection mechanism. IEEE Access 8, 154727–154745 (2020). https://doi.org/10.1109/ACCESS.2020.3018749

    Article  Google Scholar 

  15. Loy, C.C., Xiang, T., Gong, S.: Modelling multi-object activity by Gaussian processes. In: British Machine Vision Conference, BMVC 2009 - Proceedings, pp. 1–11 (2009). https://doi.org/10.5244/C.23.13

  16. Luo, Y., Yin, L., Bai, W., Mao, K.: An appraisal of incremental learning methods, October 2020. https://doi.org/10.3390/e22111190, https://www.mdpi.com/1099-4300/22/11/1190/htm

  17. Neal, R.M.: Regression and classification using gaussian process priors. Bayesian Stat. 6, 475–501 (1998). http://www.cs.utoronto.ca/radford/.Gaussianprocesses

  18. Nishida, T., Waseda, T., Katori, M., Ohuchi, K.: Optimization of integrated weather routing systems for sailing cargo ships, June 2011

    Google Scholar 

  19. Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07–12-June, pp. 1401–1409. IEEE Computer Society, October 2015. https://doi.org/10.1109/CVPR.2015.7298746

  20. Rüping, S.: Incremental learning with support vector machines. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 641–642 (2001). https://doi.org/10.1109/icdm.2001.989589

  21. Sadjina, S., Kyllingstad, L.T., Rindarøy, M., Skjong, S., Esøy, V., Pedersen, E.: Distributed co-simulation of maritime systems and operations. J. Offshore Mech. Arctic Eng. 141(1) (2019). https://doi.org/10.1115/1.4040473

  22. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  23. Tang, H.S., Xue, S.T., Chen, R., Sato, T.: Online weighted LS-SVM for hysteretic structural system identification. Eng. Struct. 28(12), 1728–1735 (2006). https://doi.org/10.1016/j.engstruct.2006.03.008

    Article  Google Scholar 

  24. Twumasi, Y.A., Merem, E.C.: User manual and system documentation of WAVEWATCH III. Int. J. Environ. Res. Public Health 3(1), 98–106 (2006)

    Article  Google Scholar 

  25. Wang, T., Li, G., Hatledal, L.I., Skulstad, R., Aesoy, V., Zhang, H.: Incorporating approximate dynamics into data-driven calibrator: a representative model for ship maneuvering prediction. IEEE Trans. Ind. Inf. 18(3), 1781–1789 (2022). https://doi.org/10.1109/TII.2021.3088404

    Article  Google Scholar 

  26. Wang, W., Men, C., Lu, W.: Online prediction model based on support vector machine. Neurocomputing 71(4–6), 550–558 (2008). https://doi.org/10.1016/j.neucom.2007.07.020

    Article  Google Scholar 

  27. Xu, C.Z., Zou, Z.J.: online prediction of ship roll motion in waves based on auto-moving gird search-least square support vector machine. Math. Probl. Eng. 2021 (2021). https://doi.org/10.1155/2021/2760517

  28. Yan, R., Shen, F., Sun, C., Chen, X.: Knowledge transfer for rotary machine fault diagnosis. IEEE Sens. J. 20(15), 8374–8393 (2020). https://doi.org/10.1109/JSEN.2019.2949057

    Article  Google Scholar 

  29. Yin, J.C., Perakis, A.N., Wang, N.: A real-time ship roll motion prediction using wavelet transform and variable RBF network. Ocean Eng. 160, 10–19 (2018). https://doi.org/10.1016/j.oceaneng.2018.04.058

    Article  Google Scholar 

  30. Yin, J.C., Zou, Z.J., Xu, F.: On-line prediction of ship roll motion during maneuvering using sequential learning RBF neuralnetworks. Ocean Eng. 61, 139–147 (2013)

    Article  Google Scholar 

  31. Yu, C., Yin, J., Hu, J., Zhang, A.: Online ship rolling prediction using an improved OS-ELM, September 2014

    Google Scholar 

  32. Zhang, W., Liu, Z.: Real-time ship motion prediction based on time delay wavelet neural network. J. Appl. Math. 2014 (2014). https://doi.org/10.1155/2014/176297

  33. Zheng, H., et al.: Cross-domain fault diagnosis using knowledge transfer strategy: a review. IEEE Access 7, 129260–129290 (2019). https://doi.org/10.1109/ACCESS.2019.2939876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongtong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, T., Skulstad, R., Kanazawa, M., Hatledal, L.I., Li, G., Zhang, H. (2022). Adaptive Data-driven Predictor of Ship Maneuvering Motion Under Varying Ocean Environments. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Practice. ISoLA 2022. Lecture Notes in Computer Science, vol 13704. Springer, Cham. https://doi.org/10.1007/978-3-031-19762-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19762-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19761-1

  • Online ISBN: 978-3-031-19762-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics