Abstract
The science of autonomy is the systematic development of fundamental knowledge about autonomous decision making and task completing in the form of testable autonomous methods, models and systems. In ocean applications, it involves varied disciplines that are not often connected. However, marine autonomy applications are rapidly growing, both in numbers and in complexity. This new paradigm in ocean science and operations motivates the need to carry out interdisciplinary research in the science of autonomy. This chapter reviews some recent results and research directions in time-optimal path planning and optimal adaptive sampling. The aim is to set a basis for a large number of vehicles forming heterogeneous and collaborative underwater swarms that are smart, i. e., knowledgeable about the predicted environment and their uncertainties, and about the predicted effects of autonomous sensing on future operations. The methodologies are generic and applicable to any swarm that moves and senses dynamic environmental fields. However, our focus is underwater path planning and adaptive sampling with a range of vehicles such as autonomous underwater vehicles (GlossaryTerm
AUV
s), gliders, ships or remote sensing platforms.Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 1-D:
-
one-dimensional
- 2-D:
-
two-dimensional
- 3-D:
-
three-dimensional
- 4-D:
-
four-dimensional
- AUV:
-
autonomous underwater vehicle
- AWACS:
-
autonomous wide aperture cluster for surveillance
- CTD:
-
conductivity, temperature and depth
- ESSE:
-
error subspace statistical estimation
- GA:
-
genetic algorithm
- GMM:
-
Gaussian Mixture Model
- MILP:
-
mixed integer linear programming
- MIP:
-
mixed integer programming
- MSEAS:
-
multidisciplinary simulation, estimation and assimilation system
- PDE:
-
partial differential equation
- PDF:
-
probability density function
- POMDP:
-
partially observable Markov decision process
- REMUS:
-
remote environmental monitoring units
References
H. Stommel: The Slocum mission, Oceanography 2(1), 22–25 (1989)
T. Lolla: Path Planning in Time Dependent Flows Using Level Set Methods, Master's Thesis (MIT, Cambridge 2012)
T. Lolla, M.P. Ueckermann, K. Yigit, P.J. Haley Jr., P.F.J. Lermusiaux: Path planning in time dependent flow fields using level set methods, Proc. ICRA (2012) pp. 166–173
N.E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, R. Davis: Collective motion, sensor networks and ocean sampling, Proc. IEEE OCEANS‘07, Vol. 95 (2007) pp. 48–74
P.F.J. Lermusiaux: Adaptive modeling, adaptive data assimilation and adaptive sampling, Physica D 230, 172–196 (2007)
N. Roy, H.-L. Choi, D. Gombos, J. Hansen, J. How, S. Park: Adaptive observation strategies for forecast error minimization, Lecture Notes Comput. Sci. 4487, 1138–1146 (2007)
D.A. Paley, F. Zhang, N.E. Leonard: Cooperative control for ocean sampling: The glider coordinated control system, IEEE Trans. Control Syst. Technol. 16(4), 735–744 (2008)
S.R. Ramp, R.E. Davis, N.E. Leonard, I. Shulman, Y. Chao, A.R. Robinson, J. Marsden, P.F.J. Lermusiaux, D. Fratantoni, J.D. Paduan, F. Chavez, F.L. Bahr, S. Liang, W. Leslie, Z. Li: Preparing to predict: The second autonomous ocean sampling network (AOSN-II) experiment in the Monterey Bay, Deep Sea Res. Part II 56(3–5), 68–86 (2009)
T.B. Curtin, J.G. Bellingham: Progress toward autonomous ocean sampling networks, Deep Sea Res. Part II 56(3–5), 62–67 (2009)
T. Lolla, P.F.J. Lermusiaux, M.P. Ueckermann, P.J. Haley Jr.: Modified Level Set Approaches for the Planning of Time-Optimal Paths for Swarms of Ocean Vehicles, MSEAS Report-14 (MIT, Cambridge 2012)
T. Lolla, P.F.J. Lermusiaux, M.P. Ueckermann, P.J. Haley Jr.: Time-optimal path planning in dynamic flows using level set equations: Theory and schemes, Ocean Dynamics 64(10), 1373–1397 (2014)
T. Lolla, P.J. Haley Jr., P.F.J. Lermusiaux: Time-optimal path planning in dynamic flows using level set equations: Realistic applications, Ocean Dynamics 64(10), 1399–1417 (2014)
K. Yigit: Path Planning Methods for Autonomous Underwater Vehicles, Master's Thesis (MIT, Cambridge 2011)
T. Lolla, P.J. Haley Jr., P.F.J. Lermusiaux: Path planning in multi-scale ocean flows: Coordination and dynamic obstacles, Ocean Dynamics 94, 46–66 (2015)
M.P. Ueckermann, P.F.J. Lermusiaux, T.P. Sapsis: Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows, J. Comput. Phys. 233, 272–294 (2013)
P.F.J. Lermusiaux, P. Malanotte-Rizzoli, D. Stammer, J. Carton, J. Cummings, A.M. Moore: Progress and prospects of U.S. data assimilation in ocean research, Oceanography 19(1), 172–183 (2006)
P.F.J. Lermusiaux, C.-S. Chiu, G.G. Gawarkiewicz, P. Abbot, A.R. Robinson, R.N. Miller, P.J. Haley, W.G. Leslie, S.J. Majumdar, A. Pang, F. Lekien: Quantifying uncertainties in ocean predictions, Oceanography 19(1), 92–105 (2006)
T.P. Sapsis, P.F.J. Lermusiaux: Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D 238, 2347–2360 (2009)
T.P. Sapsis, P.F.J. Lermusiaux: Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty, Physica D 241(1), 60–76 (2012)
P.F.J. Lermusiaux: Uncertainty estimation and prediction for interdisciplinary ocean dynamics, J. Comput. Phys. 217, 176–199 (2006)
P.J. Haley Jr., P.F.J. Lermusiaux: Multiscale two-way embedding schemes for free-surface primitive-equations in the multidisciplinary simulation, estimation and assimilation system, Ocean Dyn. 60, 1497–1537 (2010)
P.F.J. Lermusiaux, P.J. Haley Jr., W.G. Leslie, A. Agarwal, O. Logutov, L.J. Burton: Multiscale physical and biological dynamics in the Philippines archipelago: Predictions and processes, Oceanography PhilEx Issue 24(1), 70–89 (2011)
P.F.J. Lermusiaux, P.J. Haley Jr., N.K. Yilmaz: Environmental prediction, path planning and adaptive sampling: Sensing and modeling for efficient ocean monitoring, management and pollution control, Sea Technol. 48(9), 35–38 (2007)
N.K. Yilmaz, C. Evangelinos, P.F.J. Lermusiaux, N. Patrikalakis: Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming, IEEE-JOE 33(4), 522–537 (2008)
K.D. Heaney, G. Gawarkiewicz, T.F. Duda, P.F.J. Lermusiaux: Non-linear optimization of autonomous undersea vehicle sampling strategies for oceanographic data-assimilation, J. Field Robotics 24(6), 437–448 (2007)
D. Wang, P.F.J. Lermusiaux, P.J. Haley, D. Eickstedt, W.G. Leslie, H. Schmidt: Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment, J. Mar. Syst. 78, S393–S407 (2009)
J. Xu, P.F.J. Lermusiaux, P.J. Haley Jr., W.G. Leslie, O.G. Logutov: Spatial and temporal variations in acoustic propagation during the PLUSNet’07 exercise in Dabob Bay, Proc. POMA, Vol. 4 (2008) p. 070001
P.F.J. Lermusiaux: Evolving the subspace of the three-dimensional multiscale ocean variability: Massachusetts Bay, J. Mar. Syst. 29, 385–422 (2001)
J. Curcio, T. Schneider, M. Benjamin, A. Patrikalakis: Autonomous surface craft provide flexibility to remote adaptive oceanographic sampling and modeling, Proc. IEEE OCEANS‘08 (2008) pp. 1–7
N.E. Leonard, D.A. Paley, R.E. Davis, D.M. Fratantoni, F. Lekien, F. Zhang: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay, J. Field Robotics 27(6), 718–740 (2010)
N.K. Yilmaz, C. Evangelinos, N.M. Patrikalakis, P.F.J. Lermusiaux, P.J. Haley, W.G. Leslie, A.R. Robinson, D. Wang, H. Schmidt: Path planning methods for adaptive sampling of environmental and acoustical ocean fields, Proc. OCEANS‘06 (2006)
N.K. Yilmaz, P.F.J. Lermusiaux: Mixed Integer Linear Programming MILP Path Planning of AUVs for Adaptive Sampling: Real-World Simulation Results, MSEAS Tech. Rep., Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (2012)
T. Sondergaard, P.F.J. Lermusiaux: Data assimilation with Gaussian Mixture Models using the dynamically orthogonal field equations. Part I: Theory and scheme, Mon. Weather Rev. 141(6), 1737–1760 (2013)
T. Sondergaard, P.F.J. Lermusiaux: Data assimilation with Gaussian Mixture Models using the dynamically orthogonal field equations. Part II: Applications, Mon. Weather Rev. 141(6), 1761–1785 (2013)
E.N. Lorenz, K.A. Emanuel: Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci. 55(3), 399–414 (1998)
M. Gardner: The fantastic combinations of John Conway’s new solitaire game life, Scientific American 223, 120–123 (1970)
R.A. Monetti, E.V. Albano: Critical edge between frozen extinction and chaotic life, Physical Review E 52(6), 5825–5831 (1995)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lermusiaux, P.F. et al. (2016). Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-16649-0_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16648-3
Online ISBN: 978-3-319-16649-0
eBook Packages: EngineeringEngineering (R0)