Nothing Special   »   [go: up one dir, main page]

Skip to main content

Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles

  • Chapter
Springer Handbook of Ocean Engineering

Abstract

The science of autonomy is the systematic development of fundamental knowledge about autonomous decision making and task completing in the form of testable autonomous methods, models and systems. In ocean applications, it involves varied disciplines that are not often connected. However, marine autonomy applications are rapidly growing, both in numbers and in complexity. This new paradigm in ocean science and operations motivates the need to carry out interdisciplinary research in the science of autonomy. This chapter reviews some recent results and research directions in time-optimal path planning and optimal adaptive sampling. The aim is to set a basis for a large number of vehicles forming heterogeneous and collaborative underwater swarms that are smart, i. e., knowledgeable about the predicted environment and their uncertainties, and about the predicted effects of autonomous sensing on future operations. The methodologies are generic and applicable to any swarm that moves and senses dynamic environmental fields. However, our focus is underwater path planning and adaptive sampling with a range of vehicles such as autonomous underwater vehicles (GlossaryTerm

AUV

s), gliders, ships or remote sensing platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

4-D:

four-dimensional

AUV:

autonomous underwater vehicle

AWACS:

autonomous wide aperture cluster for surveillance

CTD:

conductivity, temperature and depth

ESSE:

error subspace statistical estimation

GA:

genetic algorithm

GMM:

Gaussian Mixture Model

MILP:

mixed integer linear programming

MIP:

mixed integer programming

MSEAS:

multidisciplinary simulation, estimation and assimilation system

PDE:

partial differential equation

PDF:

probability density function

POMDP:

partially observable Markov decision process

REMUS:

remote environmental monitoring units

References

  • H. Stommel: The Slocum mission, Oceanography 2(1), 22–25 (1989)

    Article  Google Scholar 

  • T. Lolla: Path Planning in Time Dependent Flows Using Level Set Methods, Master's Thesis (MIT, Cambridge 2012)

    Book  Google Scholar 

  • T. Lolla, M.P. Ueckermann, K. Yigit, P.J. Haley Jr., P.F.J. Lermusiaux: Path planning in time dependent flow fields using level set methods, Proc. ICRA (2012) pp. 166–173

    Google Scholar 

  • N.E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, R. Davis: Collective motion, sensor networks and ocean sampling, Proc. IEEE OCEANS‘07, Vol. 95 (2007) pp. 48–74

    Google Scholar 

  • P.F.J. Lermusiaux: Adaptive modeling, adaptive data assimilation and adaptive sampling, Physica D 230, 172–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Roy, H.-L. Choi, D. Gombos, J. Hansen, J. How, S. Park: Adaptive observation strategies for forecast error minimization, Lecture Notes Comput. Sci. 4487, 1138–1146 (2007)

    Article  Google Scholar 

  • D.A. Paley, F. Zhang, N.E. Leonard: Cooperative control for ocean sampling: The glider coordinated control system, IEEE Trans. Control Syst. Technol. 16(4), 735–744 (2008)

    Article  Google Scholar 

  • S.R. Ramp, R.E. Davis, N.E. Leonard, I. Shulman, Y. Chao, A.R. Robinson, J. Marsden, P.F.J. Lermusiaux, D. Fratantoni, J.D. Paduan, F. Chavez, F.L. Bahr, S. Liang, W. Leslie, Z. Li: Preparing to predict: The second autonomous ocean sampling network (AOSN-II) experiment in the Monterey Bay, Deep Sea Res. Part II 56(3–5), 68–86 (2009)

    Article  Google Scholar 

  • T.B. Curtin, J.G. Bellingham: Progress toward autonomous ocean sampling networks, Deep Sea Res. Part II 56(3–5), 62–67 (2009)

    Article  Google Scholar 

  • T. Lolla, P.F.J. Lermusiaux, M.P. Ueckermann, P.J. Haley Jr.: Modified Level Set Approaches for the Planning of Time-Optimal Paths for Swarms of Ocean Vehicles, MSEAS Report-14 (MIT, Cambridge 2012)

    Google Scholar 

  • T. Lolla, P.F.J. Lermusiaux, M.P. Ueckermann, P.J. Haley Jr.: Time-optimal path planning in dynamic flows using level set equations: Theory and schemes, Ocean Dynamics 64(10), 1373–1397 (2014)

    Article  Google Scholar 

  • T. Lolla, P.J. Haley Jr., P.F.J. Lermusiaux: Time-optimal path planning in dynamic flows using level set equations: Realistic applications, Ocean Dynamics 64(10), 1399–1417 (2014)

    Article  Google Scholar 

  • K. Yigit: Path Planning Methods for Autonomous Underwater Vehicles, Master's Thesis (MIT, Cambridge 2011)

    Google Scholar 

  • T. Lolla, P.J. Haley Jr., P.F.J. Lermusiaux: Path planning in multi-scale ocean flows: Coordination and dynamic obstacles, Ocean Dynamics 94, 46–66 (2015)

    Google Scholar 

  • M.P. Ueckermann, P.F.J. Lermusiaux, T.P. Sapsis: Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows, J. Comput. Phys. 233, 272–294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • P.F.J. Lermusiaux, P. Malanotte-Rizzoli, D. Stammer, J. Carton, J. Cummings, A.M. Moore: Progress and prospects of U.S. data assimilation in ocean research, Oceanography 19(1), 172–183 (2006)

    Article  Google Scholar 

  • P.F.J. Lermusiaux, C.-S. Chiu, G.G. Gawarkiewicz, P. Abbot, A.R. Robinson, R.N. Miller, P.J. Haley, W.G. Leslie, S.J. Majumdar, A. Pang, F. Lekien: Quantifying uncertainties in ocean predictions, Oceanography 19(1), 92–105 (2006)

    Google Scholar 

  • T.P. Sapsis, P.F.J. Lermusiaux: Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D 238, 2347–2360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • T.P. Sapsis, P.F.J. Lermusiaux: Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty, Physica D 241(1), 60–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • P.F.J. Lermusiaux: Uncertainty estimation and prediction for interdisciplinary ocean dynamics, J. Comput. Phys. 217, 176–199 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • P.J. Haley Jr., P.F.J. Lermusiaux: Multiscale two-way embedding schemes for free-surface primitive-equations in the multidisciplinary simulation, estimation and assimilation system, Ocean Dyn. 60, 1497–1537 (2010)

    Article  Google Scholar 

  • P.F.J. Lermusiaux, P.J. Haley Jr., W.G. Leslie, A. Agarwal, O. Logutov, L.J. Burton: Multiscale physical and biological dynamics in the Philippines archipelago: Predictions and processes, Oceanography PhilEx Issue 24(1), 70–89 (2011)

    Article  Google Scholar 

  • P.F.J. Lermusiaux, P.J. Haley Jr., N.K. Yilmaz: Environmental prediction, path planning and adaptive sampling: Sensing and modeling for efficient ocean monitoring, management and pollution control, Sea Technol. 48(9), 35–38 (2007)

    Google Scholar 

  • N.K. Yilmaz, C. Evangelinos, P.F.J. Lermusiaux, N. Patrikalakis: Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming, IEEE-JOE 33(4), 522–537 (2008)

    Google Scholar 

  • K.D. Heaney, G. Gawarkiewicz, T.F. Duda, P.F.J. Lermusiaux: Non-linear optimization of autonomous undersea vehicle sampling strategies for oceanographic data-assimilation, J. Field Robotics 24(6), 437–448 (2007)

    Article  Google Scholar 

  • D. Wang, P.F.J. Lermusiaux, P.J. Haley, D. Eickstedt, W.G. Leslie, H. Schmidt: Acoustically focused adaptive sampling and on-board routing for marine rapid environmental assessment, J. Mar. Syst. 78, S393–S407 (2009)

    Article  Google Scholar 

  • J. Xu, P.F.J. Lermusiaux, P.J. Haley Jr., W.G. Leslie, O.G. Logutov: Spatial and temporal variations in acoustic propagation during the PLUSNet’07 exercise in Dabob Bay, Proc. POMA, Vol. 4 (2008) p. 070001

    Google Scholar 

  • P.F.J. Lermusiaux: Evolving the subspace of the three-dimensional multiscale ocean variability: Massachusetts Bay, J. Mar. Syst. 29, 385–422 (2001)

    Article  Google Scholar 

  • J. Curcio, T. Schneider, M. Benjamin, A. Patrikalakis: Autonomous surface craft provide flexibility to remote adaptive oceanographic sampling and modeling, Proc. IEEE OCEANS‘08 (2008) pp. 1–7

    Google Scholar 

  • N.E. Leonard, D.A. Paley, R.E. Davis, D.M. Fratantoni, F. Lekien, F. Zhang: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay, J. Field Robotics 27(6), 718–740 (2010)

    Article  Google Scholar 

  • N.K. Yilmaz, C. Evangelinos, N.M. Patrikalakis, P.F.J. Lermusiaux, P.J. Haley, W.G. Leslie, A.R. Robinson, D. Wang, H. Schmidt: Path planning methods for adaptive sampling of environmental and acoustical ocean fields, Proc. OCEANS‘06 (2006)

    Google Scholar 

  • N.K. Yilmaz, P.F.J. Lermusiaux: Mixed Integer Linear Programming MILP Path Planning of AUVs for Adaptive Sampling: Real-World Simulation Results, MSEAS Tech. Rep., Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (2012)

    Google Scholar 

  • T. Sondergaard, P.F.J. Lermusiaux: Data assimilation with Gaussian Mixture Models using the dynamically orthogonal field equations. Part I: Theory and scheme, Mon. Weather Rev. 141(6), 1737–1760 (2013)

    Article  Google Scholar 

  • T. Sondergaard, P.F.J. Lermusiaux: Data assimilation with Gaussian Mixture Models using the dynamically orthogonal field equations. Part II: Applications, Mon. Weather Rev. 141(6), 1761–1785 (2013)

    Article  Google Scholar 

  • E.N. Lorenz, K.A. Emanuel: Optimal sites for supplementary weather observations: Simulation with a small model, J. Atmos. Sci. 55(3), 399–414 (1998)

    Article  Google Scholar 

  • M. Gardner: The fantastic combinations of John Conway’s new solitaire game life, Scientific American 223, 120–123 (1970)

    Article  Google Scholar 

  • R.A. Monetti, E.V. Albano: Critical edge between frozen extinction and chaotic life, Physical Review E 52(6), 5825–5831 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre F.J. Lermusiaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lermusiaux, P.F. et al. (2016). Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics