Nothing Special   »   [go: up one dir, main page]

Skip to main content

A 2.5D Coarse-to-Fine Framework for 3D Cardiac CT View Planning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13535))

Included in the following conference series:

Abstract

Usually, the directly acquired CT images are from the axial views with respect to the major axes of the body, which do not effectively represent the structure of the heart. If CT imaging is first reformatted into the typical cardiac imaging planes, it will lay the foundation for the subsequent analysis. In this paper, we propose an automatic CT view planning method to acquire standard views of the heart from 3D CT volume, obtaining the equation of the plane by detecting landmarks that can determine this view. To face the challenge of memory cost brought by 3D CT input, we convert the 3D problem into a 2.5D problem, taking into account the spatial context information at the same time. We design a coarse-to-fine framework for the automatic detection of anatomical landmarks. The coarse network is used to estimate the probability distribution of the landmark location in each set of orthogonal planes, and the fine network is further used to regress the offset distance of the current result from the ground-truth. We construct the first known dataset of reformatted cardiac CT with landmark annotations, and the proposed method is evaluated on our dataset, validating its accuracy in the tasks of landmark detection and view planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Who cardiovascular diseases. https://www.who.int/cardiovascular_diseases/about_cvd/en/. Accessed 29 July 2020

  2. Alansary, A., et al.: Automatic view planning with multi-scale deep reinforcement learning agents. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 277–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_32

    Chapter  Google Scholar 

  3. Blansit, K., Retson, T., Masutani, E., Bahrami, N., Hsiao, A.: Deep learning-based prescription of cardiac MRI planes. Radiol. Artif. Intell. 1(6), e180069 (2019)

    Article  Google Scholar 

  4. De Vos, B.D., Wolterink, J.M., de Jong, P.A., Leiner, T., Viergever, M.A., Išgum, I.: Convnet-based localization of anatomical structures in 3-D medical images. IEEE Trans. Med. Imaging 36(7), 1470–1481 (2017)

    Article  Google Scholar 

  5. Frick, M., et al.: Fully automatic geometry planning for cardiac MR imaging and reproducibility of functional cardiac parameters. J. Magn. Reson. Imaging 34(2), 457–467 (2011)

    Article  Google Scholar 

  6. Itti, L., Chang, L., Ernst, T.: Automatic scan prescription for brain MRI. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 45(3), 486–494 (2001)

    Article  Google Scholar 

  7. Jackson, C.E., Robson, M.D., Francis, J.M., Noble, J.A.: Computerised planning of the acquisition of cardiac MR images. Comput. Med. Imaging Graph. 28(7), 411–418 (2004)

    Article  Google Scholar 

  8. Le, M., Lieman-Sifry, J., Lau, F., Sall, S., Hsiao, A., Golden, D.: Computationally efficient cardiac views projection using 3D convolutional neural networks. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 109–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_13

    Chapter  Google Scholar 

  9. Lelieveldt, B.P., van der Geest, R.J., Lamb, H.J., Kayser, H.W., Reiber, J.H.: Automated observer-independent acquisition of cardiac short-axis MR images: a pilot study. Radiology 221(2), 537–542 (2001)

    Article  Google Scholar 

  10. Li, Y., et al.: Fast multiple landmark localisation using a patch-based iterative network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 563–571. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_64

    Chapter  Google Scholar 

  11. Lu, X., et al.: Automatic view planning for cardiac MRI acquisition. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 479–486. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_59

    Chapter  Google Scholar 

  12. McNitt-Gray, M.F.: AAPM/RSNA physics tutorial for residents: topics in CT: radiation dose in CT. Radiographics 22(6), 1541–1553 (2002)

    Article  Google Scholar 

  13. American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging, et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002)

    Google Scholar 

  14. Noothout, J.M., et al.: Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans. Med. Imaging 39(12), 4011–4022 (2020)

    Article  Google Scholar 

  15. Noothout, J.M., de Vos, B.D., Wolterink, J.M., Leiner, T., Išgum, I.: CNN-based landmark detection in cardiac CTA scans. arXiv preprint arXiv:1804.04963 (2018)

  16. Nuñez-Garcia, M., Cedilnik, N., Jia, S., Sermesant, M., Cochet, H.: Automatic multiplanar CT reformatting from trans-axial into left ventricle short-axis view. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 14–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_2

    Chapter  Google Scholar 

  17. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  18. Wei, D., Ma, K., Zheng, Y.: Training automatic view planner for cardiac MR imaging via self-supervision by spatial relationship between views. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 526–536. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_51

    Chapter  Google Scholar 

  19. Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D.: Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 17–21. IEEE (2015)

    Google Scholar 

  20. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 26(10), 4753–4764 (2017). https://doi.org/10.1109/TIP.2017.2721106

    Article  MathSciNet  Google Scholar 

  21. Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D.: 3D deep learning for efficient and robust landmark detection in volumetric data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 565–572. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_69

    Chapter  Google Scholar 

  22. Zhou, X., et al.: Automatic anatomy partitioning of the torso region on CT images by using a deep convolutional network with majority voting. In: Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950, pp. 256–261. SPIE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinsu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, X., Zhu, Y. (2022). A 2.5D Coarse-to-Fine Framework for 3D Cardiac CT View Planning. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13535. Springer, Cham. https://doi.org/10.1007/978-3-031-18910-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18910-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18909-8

  • Online ISBN: 978-3-031-18910-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics