Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks

  • Conference paper
  • First Online:
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2017, ML-CDS 2017)

Abstract

4D Flow is an MRI sequence which allows acquisition of 3D images of the heart. The data is typically acquired volumetrically, so it must be reformatted to generate cardiac long axis and short axis views for diagnostic interpretation. These views may be generated by placing 6 landmarks: the left and right ventricle apex, and the aortic, mitral, pulmonary, and tricuspid valves. In this paper, we propose an automatic method to localize landmarks in order to compute the cardiac views. Our approach consists of first calculating a bounding box that tightly crops the heart, followed by a landmark localization step within this bounded region. Both steps are based on a 3D extension of the recently introduced ENet. We demonstrate that the long and short axis projections computed with our automated method are of equivalent quality to projections created with landmarks placed by an experienced cardiac radiologist, based on a blinded test administered to a different cardiac radiologist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  2. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_27

    Chapter  Google Scholar 

  3. Lu, X., Jolly, M.-P., Georgescu, B., Hayes, C., Speier, P., Schmidt, M., Bi, X., Kroeker, R., Comaniciu, D., Kellman, P., Mueller, E., Guehring, J.: Automatic view planning for Cardiac MRI acquisition. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 479–486. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23626-6_59

    Chapter  Google Scholar 

  4. Pfister, T., Charles, J., Zisserman, A.: Flowing convnets for human pose estimation in videos. In: ICCV, pp. 1913–1921 (2015)

    Google Scholar 

  5. Paszke, A., et al.: Enet: a deep neural network architecture for real-time semantic segmentation arXiv:1606.02147 (2016)

  6. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics gems IV. Academic Press Professional Inc., pp. 474–485 (1994)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions arXiv:1511.07122 (2015)

  9. Kingma, D., Ba, J.: Adam: a method for stochastic optimization arXiv:1412.6980 (2014)

  10. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network arXiv:1612.01105 (2016)

  11. Ilankathir, S.: A cadaveric study on adult human heart valve annular circumference and its clinical significance. IOSR-JDMS 1(14), 60–64 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Le, M., Lieman-Sifry, J., Lau, F., Sall, S., Hsiao, A., Golden, D. (2017). Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networks. In: Cardoso, M., et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support . DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science(), vol 10553. Springer, Cham. https://doi.org/10.1007/978-3-319-67558-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67558-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67557-2

  • Online ISBN: 978-3-319-67558-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics