Nothing Special   »   [go: up one dir, main page]

Skip to main content

Longitudinal Infant Functional Connectivity Prediction via Conditional Intensive Triplet Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Longitudinal infant brain functional connectivity (FC) constructed from resting-state functional MRI (rs-fMRI) has increasingly become a pivotal tool in studying the dynamics of early brain development. However, due to various reasons including high acquisition cost, strong motion artifact, and subject dropout, there has been an extreme shortage of usable longitudinal infant rs-fMRI scans to construct longitudinal FCs, which hinders comprehensive understanding and modeling of brain functional development at early ages. To address this issue, in this paper, we propose a novel conditional intensive triplet network (CITN) for longitudinal prediction of the dynamic development of infant FC, which can traverse FCs within a long duration and predict the target FC at any specific age during infancy. Targeting at accurately modeling of the progression pattern of FC, while maintaining the individual functional uniqueness, our model effectively disentangles the intrinsically mixed age-related and identity-related information from the source FC and predicts the target FC by fusing well-disentangled identity-related information with the specific age-related information. Specifically, we introduce an intensive triplet auto-encoder for effective disentanglement of age-related and identity-related information and an identity conditional module to mix identity-related information with designated age-related information. We train the proposed model in a self-supervised way and design downstream tasks to help robustly disentangle age-related and identity-related features. Experiments on 464 longitudinal infant fMRI scans show the superior performance of the proposed method in longitudinal FC prediction in comparison with state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heuvel, M., Pol, H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)

    Article  Google Scholar 

  2. Bastos, A.M., Schoffelen, J.M.: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016)

    Article  Google Scholar 

  3. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage 76 (2013)

    Google Scholar 

  4. Zhang, L., Wang, L., Zhu, D.: Recovering brain structural connectivity from functional connectivity via multi-GCN based generative adversarial network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 53–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_6

    Chapter  Google Scholar 

  5. Zhang, L., Wang, L., Zhu, D.: Predicting brain structural network using functional connectivity. Med. Image Anal. 79 (2022)

    Google Scholar 

  6. Yamada, H., et al.: A rapid brain metabolic change in infants detected by fMRI. NeuroReport 8(17), 3775–3778 (1997)

    Article  Google Scholar 

  7. Zhang, H., Shen, D., Lin, W.: Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts. Neuroimage 185, 664–684 (2019)

    Article  Google Scholar 

  8. Wen, X., et al.: First-year development of modules and hubs in infant brain functional networks. Neuroimage 185, 664–684 (2019)

    Article  Google Scholar 

  9. Zhang, L., et al.: Deep fusion of brain structure-function in mild cognitive impairment. Med. Image Anal. 72, 102082 (2021)

    Article  Google Scholar 

  10. Zhang, L., Wang, L., Zhu, D.: Jointly analyzing alzheimer’s disease related structure-function using deep cross-model attention network. In: IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 563–567 (2020)

    Google Scholar 

  11. Zhang, L., Zaman, A., Wang, L., Yan, J., Zhu, D.: A cascaded multi-modality analysis in mild cognitive impairment. In: Suk, H.-Il., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 557–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_64

    Chapter  Google Scholar 

  12. Wang, L., Zhang, L., Zhu, D.: learning latent structure over deep fusion model of mild cognitive impairment. In: IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1039–1043 (2020)

    Google Scholar 

  13. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)

    Article  Google Scholar 

  14. Yu, X., Zhang, L., Zhao, L., Lyu, Y., Liu, T., Zhu, D.: Disentangling spatial-temporal functional brain networks via twin-transformers. arXiv preprint arXiv:2204.09225 (2022)

  15. Lin, W., et al.: Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. Am. J. Neuroradiol. 29(10), 1883–1889 (2008)

    Article  Google Scholar 

  16. Yu, X., Scheel, N., Zhang, L., Zhu, D.C., Zhang, R., Zhu, D.: Free water in T2 FLAIR white matter hyperintensity lesions. Alzheimer’s Dementia 17 (2021)

    Google Scholar 

  17. Zhao, F., et al.: Spherical deformable U-Net: application to cortical surface parcellation and development prediction. IEEE Trans. Med. Imaging 40(4), 1217–1228 (2021)

    Article  Google Scholar 

  18. Meng, Y., et al.: Can we predict subject-specific dynamic cortical thickness maps during infancy from birth? Hum. Brain Mapp. 38(6), 2865–2874 (2017)

    Article  Google Scholar 

  19. Rekik, I., Li, G., Pew-Thian, Y., Chen, G., Lin, W., Shen D.: Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI. NeuroImage 152, 411–424 (2017)

    Google Scholar 

  20. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5810–5818 (2017)

    Google Scholar 

  21. Nie, J., Li, G., Wang, L., Gilmore, J., Lin, W., Shen, D.: A computational growth model for measuring dynamic cortical development in the first year of life. Cereb. Cortex 22(10), 2272–2284 (2012)

    Article  Google Scholar 

  22. Zhao, F., et al.: Spherical U-Net on cortical surfaces: methods and applications. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 855–866. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_67

    Chapter  Google Scholar 

  23. Bessadok, A., Mahjoub, M.A., Rekik, I.: Brain multigraph prediction using topology-aware adversarial graph neural network. Med. Image Anal. 72(3), 102090 (2021)

    Article  Google Scholar 

  24. Gurbuz, M.B., Rekik, I.: Deep graph normalizer: a geometric deep learning approach for estimating connectional brain templates. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 155–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_16

    Chapter  Google Scholar 

  25. Howell, B.R., et al.: The UNC/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development. Neuroimage 185, 891–905 (2019)

    Article  Google Scholar 

  26. Amico, E., Goñi, J.: The quest for identifiability in human functional connectomes. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  27. Finn, E.S., et al.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18(11), 1664–1671 (2015)

    Article  Google Scholar 

  28. Hu, D., et al.: Disentangled-multimodal adversarial autoencoder: application to infant age prediction with incomplete multimodal neuroimages. IEEE Trans. Med. Imaging 39(12), 4137–4149 (2020)

    Article  Google Scholar 

  29. Hu, D., et al.: Existence of functional connectome fingerprint during infancy and its stability over months. J. Neurosci. 42, 377–389 (2021)

    Google Scholar 

  30. Ran, Q., Jamoulle, T., Schaeverbeke, J., Meersmans, K., Vandenberghe, R., Dupont, P.: Reproducibility of graph measures at the subject level using resting-state fMRI. Brain Behav. 10(8), 2336–2351 (2020)

    Article  Google Scholar 

  31. Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. Adv. Neural Inf. Process. Syst. 34, 24261–24272 (2021)

    Google Scholar 

  32. Cao, J., Mo, L., Zhang, Y., Jia, K., Shen, C., Tan, M.: Multi-marginal wasserstein GAN. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  33. Hu, D., et al.: Disentangled intensive triplet autoencoder for infant functional connectome fingerprinting. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 72–82. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_8

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants (MH116225, MH117943, MH123202, MH127544, and AG075582). This work also utilizes approaches developed by an NIH grant (1U01MH110274) and the efforts of the UNC/UMN Baby Connectome Project Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, X. et al. (2022). Longitudinal Infant Functional Connectivity Prediction via Conditional Intensive Triplet Network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics