Nothing Special   »   [go: up one dir, main page]

Skip to main content

Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Functional connectome “fingerprint” is a highly characterized brain pattern that distinguishes one individual from others. Although its existence has been demonstrated in adults, an unanswered but fundamental question is whether such individualized pattern emerges since infancy. This problem is barely investigated despites its importance in identifying the origin of the intrinsic connectome patterns that mirror distinct behavioral phenotypes. However, addressing this knowledge gap is challenging because the conventional methods are only applicable to developed brains with subtle longitudinal changes and typically fail on the dramatically developing infant brains. To tackle this challenge, we invent a novel model, namely, disentangled intensive triplet autoencoder (DI-TAE). First, we introduce the triplet autoencoder to embed the original connectivity into a latent space with higher discriminative capability among infant individuals. Then, a disentanglement strategy is proposed to separate the latent variables into identity-code, age-code, and noise-code, which not only restrains the interference from age-related developmental variance, but also captures the identity-related invariance. Next, a cross-reconstruction loss and an intensive triplet loss are designed to guarantee the effectiveness of the disentanglement and enhance the inter-subject dissimilarity for better discrimination. Finally, a variance-guided bootstrap aggregating is developed for DI-TAE to further improve the performance of identification. DI-TAE is validated on three longitudinal resting-state fMRI datasets with 394 infant scans aged 16 to 874 days. Our proposed model outperforms other state-of-the-art methods by increasing the identification rate by more than 50%, and for the first time suggests the plausible existence of brain functional connectome “fingerprint” since early infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, J., Liao, X., Xia, M., et. al.: Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Hum. Brain Mapp. 39(2), 902–915 (2018)

    Google Scholar 

  2. Miranda-Dominguez, O., Feczko, E., Grayson, D.S., et. al.: Heritability of the human connectome: a connectotyping study. Netw. Neurosci. 2(02), 175–199 (2018)

    Google Scholar 

  3. Finn, E.S., Shen, X., Scheinost, D., et. al.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18(11), 1664–1674 (2015)

    Google Scholar 

  4. Horien, C., Shen, X., Scheinost, D., et. al.: The individual functional connectome is unique and stable over months to years. Neuroimage 189, 676–687 (2019)

    Google Scholar 

  5. Kaufmann, T., Alnæs, D., Doan, N.T., et. al.: Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nat. Neurosci. 20(4), 513–515 (2017)

    Google Scholar 

  6. Gilmore, J.H., Knickmeyer, R.C., Gao, W.: Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19(3), 123 (2018)

    Article  Google Scholar 

  7. Zhang, H., Shen, D., Lin, W.: Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts. NeuroImage 185, 664–684 (2019)

    Article  Google Scholar 

  8. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  9. Yang, Y., Chen, H., Shao, J.: Triplet enhanced autoencoder: model-free discriminative network embedding. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 5363–5369. AAAI Press (2019)

    Google Scholar 

  10. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, New York Inc, Secaucus, NJ, USA (2006)

    MATH  Google Scholar 

  11. Amico, E., Goñi, J.: The quest for identifiability in human functional connectomes. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  12. Byrge, L., Kennedy, D.P.: High-accuracy individual identification using a “thin slice” of the functional connectome. Netw. Neurosci. 3(2), 363–383 (2019)

    Article  Google Scholar 

  13. Thomas Yeo, B.T., Krienen, F.M., Sepulcre, J., et. al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)

    Google Scholar 

  14. Demeter, D.V., Engelhardt, L.E., Mallett, R., et. al.: Functional connectivity fingerprints at rest are similar across youths and adults and vary with genetic similarity. iScience 23(1), 100801 (2020)

    Google Scholar 

  15. Vanderwal, T., Eilbott, J., Finn, E.S., et. al.: Individual differences in functional connectivity during naturalistic viewing conditions. Neuroimage 157, 521–530 (2017)

    Google Scholar 

  16. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015). arXiv preprint arXiv:1511.05644

  17. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., et. al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Google Scholar 

  18. Zhang, H., Stanley, N., Mucha, Peter J., Yin, W., Lin, W., Shen, D.: Multi-layer large-scale functional connectome reveals infant brain developmental patterns. In: Frangi, Alejandro F., Schnabel, Julia A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 136–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_16

    Chapter  Google Scholar 

  19. Stoecklein, S., Hilgendorff, A., Li, M., et. al.: Variable functional connectivity architecture of the preterm human brain: Impact of developmental cortical expansion and maturation. Proc. Natl. Acad. Sci. 117(2), 1201–1206 (2020)

    Google Scholar 

  20. https://www.nitrc.org/projects/infantsurfatlas

  21. Li, G., Wang, L., Yap, P.-T., et al.: Computational neuroanatomy of baby brains: a review. Neuroimage 185, 906–925 (2019)

    Article  Google Scholar 

  22. Duan D., Xia S., Rekik I., et al.: Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Hum. Brain Mapp. 41(8), 1985–2003 (2020)

    Google Scholar 

  23. Howell, B.R., Styner, M.A., Gao, W., et al.: The UNC/UMN baby connectome project (BCP): an overview of the study design and protocol development. NeuroImage 185, 891–905 (2019)

    Article  Google Scholar 

  24. Wang, L., et al.:Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 411–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_47

  25. Li, G., Nie, J., Wang, L., Shi, F., et al.: Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. NeuroImage 90, 266–279 (2014)

    Article  Google Scholar 

  26. Li, G., Wang, L., Shi, F., Lin, W., Shen, D.: Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Med. Image Anal. 18(8), 1274–1289 (2014)

    Article  Google Scholar 

  27. Sun L., Zhang D., Lian C., Wang L., et al.: Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network. NeuroImage 198, 114–124 (2019)

    Google Scholar 

  28. Li, G., Wang, L., Shi, F., Gilmore, J.H., Lin, W., Shen, D.: Construction of 4D high-definition cortical surface atlases of infants: methods and applications. Med. Image Anal. 25(1), 22–36 (2015)

    Article  Google Scholar 

  29. Wu, Z., Wang, L., Lin, W., Gilmore, J.H., Li, G., Shen, D.: Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patch-based group-wise sparse representation. Hum. Brain Mapp. 40(13), 3860–3880 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grants (MH116225, MH117943, MH104324, MH109773). This work also utilizes approaches developed by an NIH grant (1U01MH110274) and the efforts of the UNC/UMN Baby Connectome Project Consortium.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Gang Li or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, D. et al. (2020). Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics