Nothing Special   »   [go: up one dir, main page]

Skip to main content

MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Inter-frame patient motion introduces spatial misalignment and degrades parametric imaging in whole-body dynamic positron emission tomography (PET). Most current deep learning inter-frame motion correction works consider only the image registration problem, ignoring tracer kinetics. We propose an inter-frame Motion Correction framework with Patlak regularization (MCP-Net) to directly optimize the Patlak fitting error and further improve model performance. The MCP-Net contains three modules: a motion estimation module consisting of a multiple-frame 3-D U-Net with a convolutional long short-term memory layer combined at the bottleneck; an image warping module that performs spatial transformation; and an analytical Patlak module that estimates Patlak fitting with the motion-corrected frames and the individual input function. A Patlak loss penalization term using mean squared percentage fitting error is introduced to the loss function in addition to image similarity measurement and displacement gradient loss. Following motion correction, the parametric images were generated by standard Patlak analysis. Compared with both traditional and deep learning benchmarks, our network further corrected the residual spatial mismatch in the dynamic frames, improved the spatial alignment of Patlak \(K_i\)/\(V_b\) images, and reduced normalized fitting error. With the utilization of tracer dynamics and enhanced network performance, MCP-Net has the potential for further improving the quantitative accuracy of dynamic PET. Our code is released at https://github.com/gxq1998/MCP-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Bhushan, M., Schnabel, J.A., Risser, L., Heinrich, M.P., Brady, J.M., Jenkinson, M.: Motion correction and parameter estimation in dceMRI sequences: application to colorectal cancer. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 476–483. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23623-5_60

    Chapter  Google Scholar 

  3. Carson, R.E.: Tracer kinetic modeling in PET. In: Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N. (eds.) Positron Emission Tomography. Springer, London (2005). https://doi.org/10.1007/1-84628-007-9_6

    Chapter  Google Scholar 

  4. Chen, K., Reiman, E., Lawson, M., Feng, D., Huang, S.C.: Decay correction methods in dynamic pet studies. IEEE Trans. Nucl. Sci. 42(6), 2173–2179 (1995)

    Article  Google Scholar 

  5. Cheng, X.: Improving reconstruction of dynamic PET imaging by utilizing temporal coherence and pharmacokinetics. Ph.D. thesis, Technische Universität München (2015)

    Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Dimitrakopoulou-Strauss, A., Pan, L., Sachpekidis, C.: Kinetic modeling and parametric imaging with dynamic pet for oncological applications: general considerations, current clinical applications, and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 48(1), 21–39 (2021)

    Article  Google Scholar 

  8. Fahrni, G., Karakatsanis, N.A., Di Domenicantonio, G., Garibotto, V., Zaidi, H.: Does whole-body patlak 18 f-fdg pet imaging improve lesion detectability in clinical oncology? Eur. Radiol. 29(9), 4812–4821 (2019)

    Article  Google Scholar 

  9. Guo, X., et al.: Inter-pass motion correction for whole-body dynamic parametric pet imaging. In: 2021 Society of Nuclear Medicine and Molecular Imaging Annual Meeting (SNMMI 2021), pp. 1421. SNMMI, Soc Nuclear Med (2021)

    Google Scholar 

  10. Guo, X., Zhou, B., Pigg, D., Spottiswoode, B., Casey, M.E., Liu, C., Dvornek, N.C.: Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network. Med. Image Anal. 80, 102524 (2022). https://doi.org/10.1016/j.media.2022.102524

  11. Jiao, J., Searle, G.E., Tziortzi, A.C., Salinas, C.A., Gunn, R.N., Schnabel, J.A.: Spatio-temporal pharmacokinetic model based registration of 4d pet neuroimaging data. Neuroimage 84, 225–235 (2014)

    Article  Google Scholar 

  12. Joshi, A., et al.: Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics 9(1), 69–84 (2011)

    Article  Google Scholar 

  13. Li, M., Wang, C., Zhang, H., Yang, G.: Mv-ran: multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis. Comput. Biol. Med. 120, 103728 (2020)

    Article  Google Scholar 

  14. Lu, Y., et al.: Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic pet. Phys. Med. Biol. 64(6), 065002 (2019)

    Article  Google Scholar 

  15. Mojica, M., Ebrahimi, M.: Motion correction in dynamic contrast-enhanced magnetic resonance images using pharmacokinetic modeling. In: Medical Imaging 2021: Image Processing, vol. 11596, p. 115962S. International Society for Optics and Photonics (2021)

    Google Scholar 

  16. Naganawa, M., et al.: Assessment of population-based input functions for Patlak imaging of whole body dynamic 18 f-fdg pet. EJNMMI Phys. 7(1), 1–15 (2020)

    Article  Google Scholar 

  17. Panin, V., Smith, A., Hu, J., Kehren, F., Casey, M.: Continuous bed motion on clinical scanner: design, data correction, and reconstruction. Phys. Med. Biol. 59(20), 6153 (2014)

    Article  Google Scholar 

  18. Patlak, C.S., Blasberg, R.G., Fenstermacher, J.D.: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cerebral Blood Flow Metabolism 3(1), 1–7 (1983)

    Article  Google Scholar 

  19. Shi, L., et al.: Automatic inter-frame patient motion correction for dynamic cardiac pet using deep learning. IEEE Trans. Med. Imaging 40, 3293–3304 (2021)

    Article  Google Scholar 

  20. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional lstm network: A machine learning approach for precipitation nowcasting. arXiv preprint arXiv:1506.04214 (2015)

  21. Vaquero, J.J., Kinahan, P.: Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu. Rev. Biomed. Eng. 17, 385–414 (2015)

    Article  Google Scholar 

  22. Wang, G., Rahmim, A., Gunn, R.N.: Pet parametric imaging: past, present, and future. IEEE Trans. Radiat. Plasma Med. Sci. 4(6), 663–675 (2020)

    Article  Google Scholar 

  23. Zhao, S., Lau, T., Luo, J., Eric, I., Chang, C., Xu, Y.: Unsupervised 3d end-to-end medical image registration with volume Tweening network. IEEE J. Biomed. Health Inform. 24(5), 1394–1404 (2019)

    Article  Google Scholar 

  24. Zhou, B., Tsai, Y.J., Chen, X., Duncan, J.S., Liu, C.: MDPET: a unified motion correction and denoising adversarial network for low-dose gated pet. IEEE Trans. Med. Imaging 40, 3154–3164 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institutes of Health (NIH) through grant R01 CA224140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicha C. Dvornek .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1079 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, X., Zhou, B., Chen, X., Liu, C., Dvornek, N.C. (2022). MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics