Nothing Special   »   [go: up one dir, main page]

Skip to main content

Clinically Translatable Direct Patlak Reconstruction from Dynamic PET with Motion Correction Using Convolutional Neural Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Patlak model is widely used in 18F-FDG dynamic positron emission tomography (PET) imaging, where the estimated parametric images reveal important biochemical and physiology information. Because of better noise modeling and more information extracted from raw sinogram, direct Patlak reconstruction gains its popularity over the indirect approach which utilizes reconstructed dynamic PET images alone. As the prerequisite of direct Patlak methods, raw data from dynamic PET are rarely stored in clinics and difficult to obtain. In addition, the direct reconstruction is time-consuming due to the bottleneck of multiple-frame reconstruction. All of these impede the clinical adoption of direct Patlak reconstruction. In this work, we proposed a data-driven framework which maps the dynamic PET images to the high-quality motion-corrected direct Patlak images through a convolutional neural network. For the patient’s motion during the long period of dynamic PET scan, we combined the correction with the backward/forward projection in direct reconstruction to better fit the statistical model. Results based on fifteen clinical 18F-FDG dynamic brain PET datasets demonstrates the superiority of the proposed framework over Gaussian, nonlocal mean and BM4D denoising, regarding the image bias and contrast-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nordberg, A., et al.: The use of PET in Alzheimer disease. Nat. Rev. Neurol. 6(2), 78 (2010)

    Article  Google Scholar 

  2. Machac, J.: Cardiac positron emission tomography imaging. In: Seminars in Nuclear Medicine, pp. 17–36. Elsevier (2005)

    Google Scholar 

  3. Beyer, T., et al.: A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000)

    Google Scholar 

  4. Matthews, J.C., Angelis, G.I., Kotasidis, F.A., Markiewicz, P.J., Reader, A.J.: Direct reconstruction of parametric images using any spatiotemporal 4D image based model and maximum likelihood expectation maximisation. In: IEEE Nuclear Science Symposuim & Medical Imaging Conference, pp. 2435–2441. IEEE (2010)

    Google Scholar 

  5. Rahmim, A., Zhou, Y., Tang, J., Lu, L., Sossi, V., Wong, D.F.: Direct 4D parametric imaging for linearized models of reversibly binding PET tracers using generalized AB-EM reconstruction. Phys. Med. Biol. 57, 733 (2012)

    Article  Google Scholar 

  6. Yan, J., Planeta-Wilson, B., Carson, R.E.: Direct 4-D PET list mode parametric reconstruction with a novel EM algorithm. IEEE Trans. Med. Imaging 31, 2213–2223 (2012)

    Article  Google Scholar 

  7. Angelis, G.I., Gillam, J.E., Ryder, W.J., Fulton, R.R., Meikle, S.R.: Direct estimation of voxel-wise neurotransmitter response maps from dynamic pet data. IEEE Trans. Med. Imaging 38, 1371–1383 (2018)

    Article  Google Scholar 

  8. Dimitrakopoulou-Strauss, A., et al.: Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J. Nucl. Med. 42(5), 713–720 (2001)

    Google Scholar 

  9. Weber, W.A.: Use of PET for monitoring cancer therapy and for predicting outcome. J. Nucl. Med. 46(6), 983–995 (2005)

    Google Scholar 

  10. Patlak, C.S., Blasberg, R.G.: Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 5(4), 584–590 (1985)

    Article  Google Scholar 

  11. Gong, K., Cheng-Liao, J., Wang, G., Chen, K.T., Catana, C., Qi, J.: Direct Patlak reconstruction from dynamic PET data using the kernel method with MRI information based on structural similarity. IEEE Trans. Med. Imaging 37, 955–965 (2018)

    Article  Google Scholar 

  12. Zhu, W., Li, Q., Bai, B., Conti, P.S., Leahy, R.M.: Patlak image estimation from dual time-point list-mode PET data. IEEE Trans. Med. Imaging 33, 913–924 (2014)

    Article  Google Scholar 

  13. Karakatsanis, N.A., Casey, M.E., Lodge, M.A., Rahmim, A., Zaidi, H.: Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys. Med. Biol. 61, 5456–5485 (2016)

    Article  Google Scholar 

  14. Wang, G., Qi, J.: Acceleration of the direct reconstruction of linear parametric images using nested algorithms. Phys. Med. Biol. 55(5), 1505–1517 (2010)

    Article  Google Scholar 

  15. Tsoumpas, C., et al.: A survey of approaches for direct parametric image reconstruction in emission tomography. Med. Phys. 35(9), 3963–3971 (2008)

    Article  Google Scholar 

  16. Ronneberger, O., et al.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Gong, K., et al.: Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans. Med. Imaging 38(3), 675–685 (2018)

    Article  Google Scholar 

  18. Jenkinson, M., et al.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  MathSciNet  Google Scholar 

  19. Jiao, J., et al.: Direct parametric reconstruction with joint motion estimation/correction for dynamic brain PET data. IEEE Trans. Med. Imaging 36(1), 203–213 (2017)

    Article  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv Prepr. arXiv1412.6980. (2014)

    Google Scholar 

  21. Xie, N., et al.: 3D tensor based nonlocal low rank approximation in dynamic PET reconstruction. Sensors (Switz.) 19(23), 1–20 (2019)

    Google Scholar 

  22. Buades, A., Coll, B., Morel, J.-M.: Non-local means denoising. Image Process. Line 1, 208–212 (2011)

    MATH  Google Scholar 

  23. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22, 119–133 (2012)

    Article  MathSciNet  Google Scholar 

  24. Lempitsky, V., Vedaldi, A., Ulyanov, D.: Deep image prior. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  25. Gong, K., Catana, C., Qi, J., Li, Q.: PET image reconstruction using deep image prior. IEEE Trans. Med. Imaging 38, 1655–1665 (2019)

    Article  Google Scholar 

  26. Cui, J., et al.: PET image denoising using unsupervised deep learning. Eur. J. Nucl. Med. Mol. Imaging 46(13), 2780–2789 (2019). https://doi.org/10.1007/s00259-019-04468-4

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No: 61525106, 61427807, U1809204), by the National Key Technology Research and Development Program of China (No: 2017YFE0104000, 2016YFC1300302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1496 kb)

Supplementary material 2 (MP4 4007 kb)

Supplementary material 3 (MP4 1795 kb)

Supplementary material 4 (MP4 1445 kb)

Supplementary material 5 (MP4 1788 kb)

Supplementary material 6 (MP4 1722 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, N. et al. (2020). Clinically Translatable Direct Patlak Reconstruction from Dynamic PET with Motion Correction Using Convolutional Neural Network. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics