Abstract
The rotational differential-linear attacks, proposed at EUROCRYPT 2021, is a generalization of differential-linear attacks by replacing the differential part of the attacks with rotational differentials. At EUROCRYPT 2021, Liu et al. presented a method based on Morawiecki et al.’s technique (FSE 2013) for evaluating the rotational differential-linear correlations for the special cases where the output linear masks are unit vectors. With this method, some powerful (rotational) differential-linear distinguishers with output linear masks being unit vectors against FRIET, Xoodoo, and Alzette were discovered. However, how to compute the rotational differential-linear correlations for arbitrary output masks was left open. In this work, we partially solve this open problem by presenting an efficient algorithm for computing the (rotational) differential-linear correlation of modulo additions for arbitrary output linear masks, based on which a technique for evaluating the (rotational) differential-linear correlation of ARX ciphers is derived. We apply the technique to Alzette, SipHash, ChaCha, and SPECK. As a result, significantly improved (rotational) differential-linear distinguishers including deterministic ones are identified. All results of this work are practical and experimentally verified to confirm the validity of our methods. In addition, we try to explain the experimental distinguishers employed in FSE 2008, FSE 2016, and CRYPTO 2020 against ChaCha. The predicted correlations are close to the experimental ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27
Ashur, T., Liu, Y.: Rotational cryptanalysis in the presence of constants. IACR Trans. Symmetric Cryptol. 2016(1), 57–70 (2016)
Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_28
Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_30
Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE. Submission to NIST (2010)
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, p. 404 (2013)
Beierle, C., et al.: Alzette: a 64-bit ARX-box - (Feat. CRAX and TRAX). In: Advances in Cryptology - CRYPTO 2020–40th Annual International Cryptology Conference, CRYPTO 2020, 17–21 August 2020, Proceedings, Part III, pp. 419–448 (2020)
Beierle, C., et al.: Lightweight AEAD and hashing using the SPARKLE permutation family. IACR Trans. Symmetric Cryptol. 2020(S1), 208–261 (2020)
Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with applications to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_12
Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol. 8, pp. 3–5 (2008)
Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_8
Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_12
Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in ARX: application to block cipher Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 289–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_15
Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for reduced round Salsa and ChaCha. IACR Trans. Symmetric Cryptol. 2016(2), 261–287 (2016)
Coutinho, M., Souza Neto, T.C.: Improved linear approximations to ARX ciphers and attacks against ChaCha. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 711–740. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_25
Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_29
Dey, S., Dey, C., Sarkar, S., Meier, W.: Revisiting cryptanalysis on ChaCha from Crypto 2020 and Eurocrypt 2021. IACR Cryptology ePrint Archive, p. 1059 (2021)
Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.: Triathlon of lightweight block ciphers for the Internet of things. J. Cryptogr. Eng. 9(3), 283–302 (2019)
Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.: Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_18
Dobraunig, C., Mendel, F., Schläffer, M.: Differential cryptanalysis of SipHash. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 165–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_10
ElSheikh, M., Abdelkhalek, A., Youssef, A.M.: On MILP-based automatic search for differential trails through modular additions with application to Bel-T. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 273–296. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_14
Ferguson, N., et al.: The Skein Hash Function Family. Submission to NIST (2010)
Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14
Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9_1
Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_4
Kim, D., Kwon, D., Song, J.: Efficient computation of boomerang connection probability for ARX-based block ciphers with application to SPECK and LEA. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 103-A(4), 677–685 (2020)
Leurent, G.: https://who.paris.inria.fr/Gaetan.Leurent/arxtools.html
Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_15
Leurent, G.: Construction of differential characteristics in ARX designs application to Skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 241–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_14
Leurent, G.: Improved differential-linear cryptanalysis of 7-Round Chaskey with partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_14
Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X_28
Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspective. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 741–770. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_26
Liu, Y., De Witte, G., Ranea, A., Ashur, T.: Rotational-XOR cryptanalysis of reduced-round SPECK. IACR Trans. Symmetric Cryptol. 2017(3), 24–36 (2017)
Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 241–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_13
Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_19
Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for ARX: application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013). https://ia.cr/2013/328
Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The differential analysis of S-functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 36–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_3
National Institute of Standards and Technology. Preliminary state standard of republic of Belarus (STBP 34.101.312011) (2011). https://apmi.bsu.by/assets/files/std/belt-spec27.pdf
Niu, Z., Sun, S., Liu, Y., Li, C.: Rotational differential-linear distinguishers of ARX ciphers with arbitrary output linear masks (2022). https://eprint.iacr.org/2022/765
Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_10
Needham, R.M., Wheeler, D.J.: TEA extensions. Report, Cambridge University (1997)
Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_24
Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016, Part II. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_24
Wallén, Johan: Linear approximations of addition modulo 2n. In: Johansson, Thomas (ed.) FSE 2003. LNCS, vol. 2887, pp. 261–273. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_20
Xu, Y., Wu, B., Lin, D.: Rotational-linear attack: a new framework of cryptanalysis on ARX ciphers with applications to Chaskey. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021, Part II. LNCS, vol. 12919, pp. 192–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88052-1_12
Acknowledgment
We thank the reviewers for their valuable comments. This work is supported by the National Key Research and Development Program of China (2018YFA0704704), the Natural Science Foundation of China (62032014), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Niu, Z., Sun, S., Liu, Y., Li, C. (2022). Rotational Differential-Linear Distinguishers of ARX Ciphers with Arbitrary Output Linear Masks. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13507. Springer, Cham. https://doi.org/10.1007/978-3-031-15802-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-15802-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15801-8
Online ISBN: 978-3-031-15802-5
eBook Packages: Computer ScienceComputer Science (R0)