Abstract
The Shortest Vector Problem is a crucial part of the lattice theory and a central lattice problem in analyzing lattice-based cryptography. This work provides a new algorithm that finds a short vector by calling the sieve oracle in projected sublattices orthogonal to each other. We first propose the Block Sieve algorithm. With blockwise sieving, proper insertion and reduction, the coordinates of the right end of vector v can be recovered. The algorithm moves the block to recover the other coordinates. We continue to optimize the algorithm and propose the Progressive Block Sieve algorithm, employing techniques such as skipping to accelerate the procedure. In a d-dimensional lattice, smaller sieve calls in (\(d-\varTheta ({d}/\ln {d})\))-dimensional sublattices are enough to find a short vector. We compare the experimental results on different lattices to test the performance of the new approach. On challenge lattices, our algorithm takes less time and fewer tours than original reduction algorithms to reach a similar outcome. As an application of the new algorithm, we test the performance of solving Learning With Errors problem. Our algorithm is able to solve the instances about 5% faster than sieving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction, revisited—filling the gaps in SVP approximation. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 274–295. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_10
Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1
Albrecht, M.R., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.: Faster enumeration-based lattice reduction: root Hermite factor \(k^{1/(2k)}\) time \(k^{k/8+o(k)}\). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 186–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_7
Albrecht, M.R., Bai, S., Li, J., Rowell, J.: Lattice reduction with approximate enumeration oracles: practical algorithms and concrete performance. Cryptology ePrint Archive, Report 2020/1260 (2020). https://eprint.iacr.org/2020/1260
Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25
Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_11
Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30
Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pp. 10–24. Society for Industrial and Applied Mathematics (2016)
Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe. Ph.D. thesis, Higher Normal School - PSL (2013). https://www.theses.fr/2013PA077242, thèse de doctorat dirigée par Nguyen, Phong-Quang Informatique Paris 7 2013
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_5
Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 207–216. Association for Computing Machinery, New York (2008). https://doi.org/10.1145/1374376.1374408
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3
Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13
Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_25
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_1
Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982). https://doi.org/10.1007/BF01457454
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pp. 276–294. Society for Industrial and Applied Mathematics (2015)
Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_31
Nguyen, P., Valle, B. (eds.): The LLL Algorithm. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-02295-1
Pohst, M.: On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications. SIGSAM Bull. 15(1), 37–44 (1981). https://doi.org/10.1145/1089242.1089247
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009). https://doi.org/10.1145/1568318.1568324
Schneider, M., Gama, N.: SVP challenge. [EB/OL]. https://www.latticechallenge.org/svp-challenge. Accessed 25 June 2021
Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 68–85. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54458-5_51
Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3_14
T. F. Development Team: FPLLL, a lattice reduction library, Version: 5.4.1 (2021). https://github.com/fplll/fplll
T. F. Development Team: FPYLLL, a Python wraper for the FPLLL lattice reduction library, Version: 0.5.6 (2021). https://github.com/fplll/fpylll
T. F. Development Team: The general sieve kernel (g6k) (2021). https://github.com/fplll/fpylll
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61872449, 62125205).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Cao, J., Cheng, Q., Li, X., Pan, Y. (2022). BS: Blockwise Sieve Algorithm for Finding Short Vectors from Sublattices. In: Alcaraz, C., Chen, L., Li, S., Samarati, P. (eds) Information and Communications Security. ICICS 2022. Lecture Notes in Computer Science, vol 13407. Springer, Cham. https://doi.org/10.1007/978-3-031-15777-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-15777-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15776-9
Online ISBN: 978-3-031-15777-6
eBook Packages: Computer ScienceComputer Science (R0)