Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lattice Reduction by Random Sampling and Birthday Methods

  • Conference paper
  • First Online:
STACS 2003 (STACS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Included in the following conference series:

Abstract

We present a novel practical algorithm that given a lattice basis b1, ..., bn finds in O(n 2( k/6 )k/4) average time a shorter vector than b 1 provided that b 1 is ( k/6 )n/(2k) times longer than the length of the shortest, nonzero lattice vector. We assume that the given basis b 1, ..., b n has an orthogonal basis that is typical for worst case lattice bases. The new reduction method samples short lattice vectors in high dimensional sublattices, it advances in sporadic big jumps. It decreases the approximation factor achievable in a given time by known methods to less than its fourth-th root. We further speed up the new method by the simple and the general birthday method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Ajtai, The shortest vector problem in L2 is NP-hard for randomised reductions. Proc. 30th STOC, pp. 10–19, 1998.

    Google Scholar 

  2. M. Ajtai, The worst-case behaviour of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice. Preprint 2002.

    Google Scholar 

  3. M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the shortest lattice vector problem. Proc. 33th STOC, 2001.

    Google Scholar 

  4. P. Camion, and J. Patarin, The knapsack hash function proposed at Crypto’89 can be broken.Proc. Eurocrypt’91, LNCS 457, Springer-Verlag, pp. 39–53, 1991.

    Google Scholar 

  5. P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a lattice. Mathematics Department, University of Amsterdam, TR 81-04, 1981.

    Google Scholar 

  6. O. Goldreich, S. Goldwasser, and S. Halevi, Public key cryptosystems from lattice reduction problems. Proc. Crypto’97, LNCS 1294, Springer-Verlag, pp. 112–131, 1997.

    Google Scholar 

  7. B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced bases. Theor. Comp. Sc.41, pp. 125–139, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Kannan, Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research12 pp. 415–440, 1987, Preliminary version in Proc. 13th STOC, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. E. Knuth, The Art of Computer Programming, Vol 1, Fundamental Algorithms. 3rd Edidtion, Addison-Wesley, Reading, 1997.

    Google Scholar 

  10. H. Koy and C. P. Schnorr, Segment and strong Segment LLL-reduction of lattice bases. Preprint University Frankfurt, 2002, http://www.mi.informatik.uni-frankfurt.de/research/papers.html

  11. H. Koy and C. P. Schnorr, Segment LLL-reduction of lattice bases. Proc. CaLC 2001, LNCS 2146, Springer-Verlag, pp. 67–80, 2001.

    Google Scholar 

  12. H. Koy, Primale/duale Segment-Reduktion von Gitterbasen. Slides of a lecture, Frankfurt, December 2000.

    Google Scholar 

  13. H. Koy and C. P. Schnorr, Segment LLL-reduction of lattice bases with floating point orthogonalization. Proc. CaLC 2001, LNCS 2146, Springer-Verlag, pp. 81–96, 2001.

    Google Scholar 

  14. A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients. Math. Ann.261, pp. 515–534, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Micciancio, The shortest vector in a lattice is NP-hard to approximate to within some constant. Proc. 39th Symp. FOCS, pp. 92–98, 1998, full paper SIAM Journal on Computing, 30 (6), pp. 2008-2035, March 2001.

    Article  MathSciNet  Google Scholar 

  16. P. Q. Nguyen, Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’97. Proc. Crypto’99, LNCS 1666, Springer-Verlag, pp. 288–304, 1999.

    Google Scholar 

  17. P. Q. Nguyen and J. Stern, Lattice reduction in cryptology: an update. Proc. ANTS-IV, LNCS 1838, Springer-Verlag, pp. 188–112. full version http://www.di.ens.fr/~pnguyen,stern/

    Google Scholar 

  18. V. Shoup, Number Theory Library. http://www.shoup.net/ntl

  19. C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comp. Sc.53, pp. 201–224, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. P. Schnorr, A more efficient algorithm for lattice reduction. J. of Algor.9, 47–62, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. P. Schnorr and M. Euchner, Lattice Basis Reduction and Solving Subset Sum Problems. Fundamentals of Comput. Theory, Lecture Notes in Comput. Sci., 591, Springer, New York, 1991, pp. 68–85. The complete paper appeared in Math. Programming Studies, 66A, 2, pp. 181-199, 1994.

    Google Scholar 

  22. D. Wagner, A Generalized Birthday Problem. Proceedings Crypto’02, LNCS 2442, Springer-Verlag, pp. 288–303, 2002. full version http://www.cs.berkeley.edu/~daw/papers/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnorr, C.P. (2003). Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics