Abstract
In this work, we study what minimal sets of assumptions suffice for constructing indistinguishability obfuscation (\(i\mathcal {O}\)). We prove:
Theorem(Informal): Assume sub-exponential security of the following assumptions:
– the Learning Parity with Noise (\(\mathsf {LPN}\)) assumption over general prime fields \(\mathbb {F}_p\) with polynomially many \(\mathsf {LPN}\) samples and error rate \(1/k^\delta \), where k is the dimension of the \(\mathsf {LPN}\) secret, and \(\delta >0\) is any constant;
– the existence of a Boolean Pseudo-Random Generator (\(\mathsf {PRG}\)) in \(\mathsf {NC}^0\) with stretch \(n^{1+\tau }\), where n is the length of the \(\mathsf {PRG}\) seed, and \(\tau >0\) is any constant;
– the Decision Linear (\(\mathsf {DLIN}\)) assumption on symmetric bilinear groups of prime order.
Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists. Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion resistant public-key functional encryption for all polynomial-size circuits.
This removes the reliance on the Learning With Errors (LWE) assumption from the recent work of [Jain, Lin, Sahai STOC’21]. As a consequence, we obtain the first fully homomorphic encryption scheme that does not rely on any lattice-based hardness assumption.
Our techniques feature a new notion of randomized encoding called Preprocessing Randomized Encoding (PRE), that essentially can be computed in the exponent of pairing groups. When combined with other new techniques, PRE gives a much more streamlined construction of \(i\mathcal {O}\) while still maintaining reliance only on well-studied assumptions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Besides [20], there are other works that contain FE security amplification techniques [4, 5, 26]. However, it has been recently acknowledged that there is a common issue in these techniques due to an incorrect application of the leakage simulation lemma. The work of [20] circumvents the use leakage simulation lemma, but achieves only weaker security amplification, which nevertheless is still sufficient for constructing \(i\mathcal {O}\).
References
Ajtai, M., Komlós, J., Szemerédi, E.: An \(O(n \log n)\) sorting network. In: 15th ACM STOC, pp. 1–9. ACM Press (April 1983)
Alekhnovich, M.: More on average case vs approximation complexity. In: 44th FOCS, pp. 298–307. IEEE Computer Society Press (October 2003)
Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE combiners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_9
Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10
Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: IO from LWE, bilinear maps, and weak pseudorandomness. IACR Cryptology ePrint Archive 2018/615 (2018)
Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15
Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional encryption for simple functions. Eprint 2015/730 (2015)
Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_6
Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography: extended abstract. In: Roughgarden, T. (ed.) ITCS 2015, pp. 143–151. ACM (January 2015)
Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_21
Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417 (2005). http://eprint.iacr.org/2005/417
Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1
Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From Cryptomania to Obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_15
Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer Society Press (October 2015)
Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_24
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM Press (October 2018)
Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_19
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (October 2013)
Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-to-state hard problems: new assumptions, new techniques, and simplification. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698, pp. 97–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_4
Goldreich, O.: Candidate one-way functions based on expander graphs. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 76–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0_10
Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, June 1–4, 2013, pp. 555–564. ACM (2013). http://doi.acm.org/10.1145/2488608.2488678
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32
Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18
Jain, A., Korb, A., Manohar, N., Sahai, A.: Amplifying the security of functional encryption, unconditionally. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 717–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_24
Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding polynomials over \(\mathbb{R}\) to build \(i\cal{O}\). In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_9
Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for \(i\cal{O}\). IACR Cryptology ePrint Archive 2019/1252 (2019). https://eprint.iacr.org/2019/1252
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over f_p, dlin, and prgs in nc\({^{\wedge }}\)0. IACR Cryptology ePrint Archive 2021/1334 (2021). https://eprint.iacr.org/2021/1334
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Khuller, S., Williams, V.V. (eds.) 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, STOC 2021, Italy, June 21–25, 2021, pp. 60–73. ACM (2021)
Jain, A., Manohar, N., Sahai, A.: Combiners for functional encryption, unconditionally. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 141–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_6
Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_2
Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20
Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018/646 (2018)
Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 96–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_5
Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and block-wise local PRGs. Cryptology ePrint Archive, Report 2017/250 (2017). http://eprint.iacr.org/2017/250
Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS, pp. 11–20. IEEE Computer Society Press (October 2016)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (May 2005)
Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 463–472. ACM (2010)
Wee, H.: Functional encryption for quadratic functions from k-Lin, revisited. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 210–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_8
Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)
Acknowledgements
Aayush Jain is supported by NTT Research, a grant from CyLab security and privacy institute and a start-up package by the computer science department at CMU.
Huijia Lin is supported by NSF grants CNS- 2026774, CNS-1936825 (CAREER), Simons JP Morgan Faculty Award, and a Simons collaboration grant on algorithmic fairness.
Amit Sahai is supported in part from a Simons Investigator Award, DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through Award HR00112020024.
The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, DARPA, ARO, Simons, Intel, Okawa Foundation, ODNI, IARPA, DIMACS, BSF, Xerox, the National Science Foundation, NTT Research, Google, J.P. Morgan or the U.S. Government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Jain, A., Lin, H., Sahai, A. (2022). Indistinguishability Obfuscation from LPN over \(\mathbb {F}_p\), DLIN, and PRGs in NC\(^0\). In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-06944-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06943-7
Online ISBN: 978-3-031-06944-4
eBook Packages: Computer ScienceComputer Science (R0)