Nothing Special   »   [go: up one dir, main page]

Skip to main content

How to Leverage Hardness of Constant-Degree Expanding Polynomials over \(\mathbb {R}\) to build \(i\mathcal {O}\)

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2019 (EUROCRYPT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11476))

Abstract

In this work, we introduce and construct D-restricted Functional Encryption (FE) for any constant \(D \ge 3\), based only on the SXDH assumption over bilinear groups. This generalizes the notion of 3-restricted FE recently introduced and constructed by Ananth et al. (ePrint 2018) in the generic bilinear group model.

A \(D=(d+2)\)-restricted FE scheme is a secret key FE scheme that allows an encryptor to efficiently encrypt a message of the form \(M=(\varvec{x},\varvec{y},\varvec{z})\). Here, \(\varvec{x}\in \mathbb {F}_{\mathbf {p}}^{d\times n}\) and \(\varvec{y},\varvec{z}\in \mathbb {F}_{\mathbf {p}}^n\). Function keys can be issued for a function \(f=\varSigma _{\varvec{I}= (i_1,..,i_d,j,k)}\ c_{\varvec{I}}\cdot \varvec{x}[1,i_1] \cdots \varvec{x}[d,i_d] \cdot \varvec{y}[j]\cdot \varvec{z}[k]\) where the coefficients \(c_{\varvec{I}}\in \mathbb {F}_{\mathbf {p}}\). Knowing the function key and the ciphertext, one can learn \(f(\varvec{x},\varvec{y},\varvec{z})\), if this value is bounded in absolute value by some polynomial in the security parameter and n. The security requirement is that the ciphertext hides \(\varvec{y}\) and \(\varvec{z}\), although it is not required to hide \(\varvec{x}\). Thus \(\varvec{x}\) can be seen as a public attribute.

D-restricted FE allows for useful evaluation of constant-degree polynomials, while only requiring the SXDH assumption over bilinear groups. As such, it is a powerful tool for leveraging hardness that exists in constant-degree expanding families of polynomials over \(\mathbb {R}\). In particular, we build upon the work of Ananth et al. to show how to build indistinguishability obfuscation (\(i\mathcal {O}\)) assuming only SXDH over bilinear groups, LWE, and assumptions relating to weak pseudorandom properties of constant-degree expanding polynomials over \(\mathbb {R}\).

This paper is a merge of two independent works, one by Jain and Sahai, and the other by Lin and Matt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Thus, we can observe that \(\chi \) should be a distribution such that LWE assumption holds with respect to \(\chi \) and parameters specified above.

  2. 2.

    Instantiations can be found in Sect. 6.2.

  3. 3.

    Instantiations can be found in Sect. 6.2.

References

  1. Agrawal, S.: New methods for indistinguishability obfuscation: bootstrapping and instantiation. IACR Cryptol. ePrint Archive 2018, 633 (2018)

    Google Scholar 

  2. Ananth, P., Brakerski, Z., Khuarana, D., Sahai, A.: New approach against the locality barrier in obfuscation: pseudo-independent generators. Unpublished Work (2017)

    Google Scholar 

  3. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: ACM CCS, pp. 646–658 (2014)

    Google Scholar 

  4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness. IACR Cryptol. ePrint Archive 2018, 615 (2018)

    Google Scholar 

  5. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_6

    Chapter  Google Scholar 

  6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34

    Chapter  Google Scholar 

  7. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_27

    Chapter  Google Scholar 

  8. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_13

    Chapter  Google Scholar 

  9. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  10. Barak, B., Hopkins, S., Jain, A., Kothari, P., Sahai, A.: Sum-of-squares meets program obfuscation, revisited. Unpublished Work (2018)

    Google Scholar 

  11. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks on GGH15. IACR Cryptol. ePrint Archive 2018, 511 (2018)

    MATH  Google Scholar 

  12. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a nash equilibrium. In: FOCS, pp. 1480–1498 (2015)

    Google Scholar 

  13. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroizing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014). http://eprint.iacr.org/2014/930

  14. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845 (2015). http://eprint.iacr.org/

  15. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_1

    Chapter  Google Scholar 

  16. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_11

    Chapter  Google Scholar 

  17. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_1

    Chapter  Google Scholar 

  18. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear maps. Cryptology ePrint Archive, Report 2015/934 (2015). http://eprint.iacr.org/

  19. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–2202 (2018)

    Article  MathSciNet  Google Scholar 

  20. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_12

    Chapter  Google Scholar 

  21. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_26

    Chapter  Google Scholar 

  22. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_13

    Chapter  Google Scholar 

  23. Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from low noise multilinear maps. IACR Cryptol. ePrint Archive 2016, 599 (2016)

    MATH  Google Scholar 

  24. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1

    Chapter  Google Scholar 

  25. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_4

    Chapter  Google Scholar 

  26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS (2013)

    Google Scholar 

  27. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_10

    Chapter  Google Scholar 

  28. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_20

    Chapter  Google Scholar 

  29. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_20

    Chapter  Google Scholar 

  30. Goldreich, O.: Candidate one-way functions based on expander graphs. IACR Cryptology ePrint Archive 2000, 63 (2000). http://eprint.iacr.org/2000/063

  31. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32

    Chapter  Google Scholar 

  32. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_11

    Chapter  Google Scholar 

  33. Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptol. ePrint Archive 2015, 866 (2015)

    Google Scholar 

  34. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_24

    Chapter  Google Scholar 

  35. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random Oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_12

    Chapter  Google Scholar 

  36. Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptol. ePrint Archive 2015, 301 (2015)

    MATH  Google Scholar 

  37. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding polynomials over \(\mathbb{R}\) to build \(i\cal{O}\). arXiv (2019)

    Google Scholar 

  38. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: STOC (2015)

    Google Scholar 

  39. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_2

    Chapter  Google Scholar 

  40. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

    Chapter  Google Scholar 

  41. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

    Chapter  Google Scholar 

  42. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to indistinguishability obfuscation. IACR Cryptol. ePrint Archive 2018, 646 (2018)

    Google Scholar 

  43. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and block-wise local prgs. Cryptology ePrint Archive, Report 2017/250 (2017). http://eprint.iacr.org/2017/250

  44. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: FOCS, pp. 11–20. IEEE (2016)

    Google Scholar 

  45. Ma, F., Zhandry, M.: New multilinear maps from CLT13 with provable security against zeroizing attacks. IACR Cryptol. ePrint Archive 2017, 946 (2017)

    Google Scholar 

  46. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_22

    Chapter  Google Scholar 

  47. Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the integers. Cryptology ePrint Archive, Report 2015/941 (2015). http://eprint.iacr.org/

  48. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: FOCS, pp. 136–145 (2003)

    Google Scholar 

  49. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_28

    Chapter  Google Scholar 

  50. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC 2014, New York, 31 May – 03 June 2014, pp. 475–484. ACM (2014). https://doi.org/10.1145/2591796.2591825

Download references

Acknowledgements

We would like to thank Prabhanjan Ananth for preliminary discussions on the concept of a \(d\,+\,2\) restricted FE scheme. We would also like to thank Pravesh Kothari, Sam Hopkins and Boaz Barak for many useful discussions about our \(\mathsf {d}\varDelta \mathsf {RG}\) Candidates. This work was done in part when both Huijia Lin and Chrisitan Matt were at University of California, Santa Barbara.

Aayush Jain and Amit Sahai are supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C- 0205. Aayush Jain is also supported by a Google PhD Fellowship in Privacy and Security. Huijia Lin and Christian Matt were supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849 (CAREER), a Hellman Fellowship, the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, Google, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aayush Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, A., Lin, H., Matt, C., Sahai, A. (2019). How to Leverage Hardness of Constant-Degree Expanding Polynomials over \(\mathbb {R}\) to build \(i\mathcal {O}\). In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science(), vol 11476. Springer, Cham. https://doi.org/10.1007/978-3-030-17653-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17653-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17652-5

  • Online ISBN: 978-3-030-17653-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics