Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Rational Hierarchical Quantum State Sharing Protocol

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13340))

Included in the following conference series:

  • 1229 Accesses

Abstract

In this paper, we propose a rational hierarchical quantum state sharing protocol. First, the dealer shares an arbitrary two-particle entangled state with m high-power players and n low-power players through (m + n + 1)-particle cluster states. The high-power players and low-players have different authorities to reconstruct the quantum state. In detail, when a high-power player reconstructs the quantum state, he needs the help of the other high-power players and any low-power players; when a low-power player reconstructs the quantum, he needs the help of all the players. Then, in order to guarantee the fairness of the protocol, we make the players with different powers have the same possibility to be the player David who can reconstruct the quantum state shared by the dealer Alice, which means David is elected by all the rational players. Second, in the process of reconstructing the quantum state, when David is a high-power player, he does not need the help of all the low-power players. Under this circumstance, we analyze the game process and solve the bargaining equilibrium between David and the low-power players selected by David based on the Rubenstein bargaining model with incomplete information. Finally, our protocol achieves security, fairness, correctness, and strict Nash equilibrium, and conforms to the actual scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gianni, J., Qu, Z.: New quantum private comparison using hyperentangled ghz state. J. Quant. Comput. 3(2), 45–54 (2021)

    Article  Google Scholar 

  2. Sun, Y., Yan, L., Sun, Z., Zhang, S., Lu, J.: A novel semi-quantum private comparison scheme using bell entangle states. Comput. Mater. Continua 66(3), 2385–2395 (2021)

    Article  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  Google Scholar 

  4. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  Google Scholar 

  5. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  Google Scholar 

  6. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5), 420–424 (2004)

    Article  MathSciNet  Google Scholar 

  7. Lance, A.M., Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 77903 (2004)

    Article  Google Scholar 

  8. Jiang, J.M., Dong, D.: Multi-party quantum state sharing via various probabilistic channels. Quant. Inf. Process. 12(1), 237–249 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cao, H., Ma, W.: Verifiable threshold quantum state sharing scheme. IEEE Access 6, 10453–10457 (2018)

    Article  Google Scholar 

  10. Song, X., Liu, Y., Xiao, M., et al.: A verifiable (t,n) threshold quantum state sharing scheme on IBM quantum cloud platform. Quantum Inf. Process. 19(9), 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  11. Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  Google Scholar 

  12. Wang, X.W., Zhang, D.Y., Tang, S.Q., Zhan, X.G., You, K.M.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49(11), 2691–2697 (2010)

    Article  MathSciNet  Google Scholar 

  13. Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44(3), 035505 (2011)

    Article  Google Scholar 

  14. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377(19–20), 1337–1344 (2013)

    Article  MathSciNet  Google Scholar 

  15. Bai, M.Q., Mo, Z.W.: Hierarchical quantum information splitting with eight-qubit cluster states. Quant. Inf. Process. 12(2), 1053–1064 (2013)

    Article  MathSciNet  Google Scholar 

  16. Yao, X.C., Wang, T.X., Chen, H.Z., et al.: Experimental demonstration of topological error correction. Nature 482(7386), 489–494 (2012)

    Article  Google Scholar 

  17. Xu, G., Wang, C., Yang, Y.-X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quant. Inf. Process. 13(1), 43–57 (2013)

    Article  Google Scholar 

  18. Zha, X.W., Miao, N., Wang, H.F.: Hierarchical quantum information splitting of an arbitrary two-qubit using a single quantum resource. Int. J. Theor. Phys. 58(8), 2428–2434 (2019)

    Article  MathSciNet  Google Scholar 

  19. Xu, G., Shan, R.T., Chen, X.B., Dong, M., Chen, Y.L.: Probabilistic and hierarchical quantum information splitting based on the non-maximally entangled cluster state. Comput. Mater. Continua 69(1), 339–349 (2021)

    Article  Google Scholar 

  20. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 623–632. Association for Computing Machinery, New York (2004)

    Google Scholar 

  21. Kol, G., Naor, M.: Games for exchanging information. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 423–432. Association for Computing Machinery, New York (2008)

    Google Scholar 

  22. De, S.J., Ruj, S.: Failure tolerant rational secret sharing. In: 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), pp. 925–932. IEEE (2016)

    Google Scholar 

  23. Chen, Z., Tian, Y., Peng, C.: An incentive-compatible rational secret sharing scheme using blockchain and smart contract. Sci.China Inf. Sci. 64(10), 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  24. Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)

    Article  Google Scholar 

  25. Qin, H., Tang, W.K., Tso, R.: Rational quantum secret sharing. Sci. Rep. 8(1), 1–7 (2018)

    Google Scholar 

  26. Dou, Z., Xu, G., Chen, X.-B., Liu, X., Yang, Y.-X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 1–12 (2018)

    MathSciNet  Google Scholar 

  27. Balasubramanian, P., Behera, B.K., Panigrahi, P.K.: Circuit implementation for rational quantum secure communication using IBM Q Experience beta platform

    Google Scholar 

  28. Khokhlov, D.L.: Interpretation of the entangled states. J. Quant. Comput. 2(3), 147–150 (2020)

    Article  MathSciNet  Google Scholar 

  29. Li, Z.Z., Li, Z.C., Chen, X.B., Qu, Z., Wang, X., Pan, H.: A practical quantum network coding protocol based on non-maximally entangled state. Comput. Mater. Continua 68(2), 2651–2663 (2021)

    Article  Google Scholar 

  30. Rubinstein, A.: A bargaining model with incomplete information about time preferences. Econometrica: J. Economet. Soc. 53(5), 1151–1172 (1985)

    Article  MathSciNet  Google Scholar 

  31. Harsanyi, J.C.: Games with incomplete information played by “Bayesian” players, I-III Part I. The basic model. Manag. Sci. 14(3), 159–182 (1967)

    Article  Google Scholar 

  32. Qin, L.R.: Research and simulation of hierarchical quantum information splitting protocol based on multi-particle state. M.S. Dissertation, Beijing University of Posts and Telecommunications, China (2019)

    Google Scholar 

  33. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. arXiv preprint arXiv:2003.06557 (2020)

    Google Scholar 

  34. Wen, Q.Y., Qin, S.J., Gao, F.: Cryptanalysis of quantum cryptographic protocols. J. Cryptol. Res. 1(2), 200–210 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Dou .

Editor information

Editors and Affiliations

Ethics declarations

Funding Statement

This work is supported by the National Key R&D Program of China (Grant No. 2020YFB1805405), the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant No. 2019BDKFJJ014), the Fundamental Research Funds for the Central Universities (Grant No. 2020RC38) and NSFC (Grant Nos. 92046001, 61671087, 61962009, 61971021), the Fundamental Research Funds for Beijing Municipal Commission of Education, the Scientific Research Launch Funds of North China University of Technology, and Beijing Urban Governance Research Base of North China University of Technology.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H. et al. (2022). A Rational Hierarchical Quantum State Sharing Protocol. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13340. Springer, Cham. https://doi.org/10.1007/978-3-031-06791-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06791-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06790-7

  • Online ISBN: 978-3-031-06791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics