Abstract
The eye is an important organ in the human body for sensing and communicating with the outside world. The development of human eye detectors is essential for applications in the computer vision field, especially under low illumination. This paper proposes a convolutional neural network to detect the position of the eye in the acquired image. This network architecture exploits the advantages of convolutional neural networks combined with the concatenated rectified linear unit (C.ReLU), inception module, and Bottleneck Attention Module (BAM) to extract feature maps. Then it uses two detectors to localize the eye area using bounding boxes. The experiment was trained, evaluated on the BioID Face and Yale Face Dataset B (YALEB) dataset. As a result, the network achieves 99.71% and 99.37% of Average Precision (AP) on YALEB and BioID Face datasets, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The BioID Face Database. https://www.bioid.com/facedb. Accessed 23 Oct 2010
Araujo, G., Ribeiro, F., da Silva, E., Goldenstein, S.: Fast eye localization without a face model using inner product detectors. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 1366–1370, January 2015. https://doi.org/10.1109/ICIP.2014.7025273
Chen, S., Liu, C.: Eye detection using discriminatory Haar features and a new efficient SVM. Image Vision Comput. 33(C), 68–77 (2015). https://doi.org/10.1016/j.imavis.2014.10.007, https://doi.org/10.1016/j.imavis.2014.10.007
Deng, J., et al.: The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking. Int. J. Comput. Vis. 127(6–7), 599–624 (2019)
Fu, H., Wei, Y., Camastra, F., Arico, P., Sheng, H.: Advances in eye tracking technology: theory, algorithms, and applications. Comput. Intell. Neurosci. 2016 (2016)
Fuhl, W., Santini, T., Kasneci, G., Kasneci, E.: Pupilnet: convolutional neural networks for robust pupil detection. CoRR abs/1601.04902 (2016). http://arxiv.org/abs/1601.04902
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CoRR abs/1709.01507 (2017). http://arxiv.org/abs/1709.01507
Liu, W., et al.: SSD: single shot multibox detector. CoRR abs/1512.02325 (2015). http://arxiv.org/abs/1512.02325
Markuš, N., Frljak, M., Pandžić, I., Ahlberg, J., Forchheimer, R.: Eye pupil localization with an ensemble randomized trees. Pattern Recogn. 47, 578–587 (2014). https://doi.org/10.1016/j.patcog.2013.08.008
Misra, D., Nalamada, T., Arasanipalai, A.U., Hou, Q.: Rotate to attend: convolutional triplet attention module. CoRR abs/2010.03045 (2020). https://arxiv.org/abs/2010.03045
Mosa, A.H., Ali, M., Kyamakya, K.: A computerized method to diagnose strabismus based on a novel method for pupil segmentation. In: Proceedings of the International Symposium on Theoretical Electrical Engineering (ISTET 2013) (2013)
Mosa, A.H., Ali, M., Kyamakya, K.: A computerized method to diagnose strabismus based on a novel method for pupil segmentation. In: Proceedings of the International Symposium on Theoretical Electrical Engineering (ISTET 2013) (2013)
Nguyen, D.-L., Putro, M.D., Jo, K.-H.: Eye state recognizer using light-weight architecture for drowsiness warning. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds.) ACIIDS 2021. LNCS (LNAI), vol. 12672, pp. 518–530. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73280-6_41
Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module (2018)
Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving convolutional neural networks via concatenated rectified linear units. CoRR abs/1603.05201 (2016), http://arxiv.org/abs/1603.05201
Sharma, R., Savakis, A.: Lean histogram of oriented gradients features for effective eye detection. J. Electr. Imaging 24, 063007 (2015). https://doi.org/10.1117/1.JEI.24.6.063007
Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842
Timm, F., Barth, E.: Accurate eye centre localisation by means of gradients. In: VISAPP (2011)
Valenti, R., Gevers, T.: Accurate eye center location through invariant isocentric patterns. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1785–1798 (2012). https://doi.org/10.1109/TPAMI.2011.251
Woo, S., Park, J., Lee, J., Kweon, I.S.: CBAM: convolutional block attention module. CoRR abs/1807.06521 (2018). http://arxiv.org/abs/1807.06521
Wu, Y., Ji, Q.: Facial landmark detection: a literature survey. CoRR abs/1805.05563 (2018). http://arxiv.org/abs/1805.05563
Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.: Robust facial landmark detection via recurrent attentive-refinement networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 57–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_4
Zadeh, A., Chong Lim, Y., Baltrusaitis, T., Morency, L.P.: Convolutional experts constrained local model for 3d facial landmark detection. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2519–2528 (2017)
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: Faceboxes: a CPU real-time face detector with high accuracy. CoRR abs/1708.05234 (2017), http://arxiv.org/abs/1708.05234
Acknowledgement
This results was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, DL., Putro, M.D., Vo, XT., Jo, KH. (2022). Convolutional Neural Network Design for Eye Detection Under Low-Illumination. In: Sumi, K., Na, I.S., Kaneko, N. (eds) Frontiers of Computer Vision. IW-FCV 2022. Communications in Computer and Information Science, vol 1578. Springer, Cham. https://doi.org/10.1007/978-3-031-06381-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-06381-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06380-0
Online ISBN: 978-3-031-06381-7
eBook Packages: Computer ScienceComputer Science (R0)