Nothing Special   »   [go: up one dir, main page]

Skip to main content

Convolutional Neural Network Design for Eye Detection Under Low-Illumination

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2022)

Abstract

The eye is an important organ in the human body for sensing and communicating with the outside world. The development of human eye detectors is essential for applications in the computer vision field, especially under low illumination. This paper proposes a convolutional neural network to detect the position of the eye in the acquired image. This network architecture exploits the advantages of convolutional neural networks combined with the concatenated rectified linear unit (C.ReLU), inception module, and Bottleneck Attention Module (BAM) to extract feature maps. Then it uses two detectors to localize the eye area using bounding boxes. The experiment was trained, evaluated on the BioID Face and Yale Face Dataset B (YALEB) dataset. As a result, the network achieves 99.71% and 99.37% of Average Precision (AP) on YALEB and BioID Face datasets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The BioID Face Database. https://www.bioid.com/facedb. Accessed 23 Oct 2010

  2. Araujo, G., Ribeiro, F., da Silva, E., Goldenstein, S.: Fast eye localization without a face model using inner product detectors. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 1366–1370, January 2015. https://doi.org/10.1109/ICIP.2014.7025273

  3. Chen, S., Liu, C.: Eye detection using discriminatory Haar features and a new efficient SVM. Image Vision Comput. 33(C), 68–77 (2015). https://doi.org/10.1016/j.imavis.2014.10.007, https://doi.org/10.1016/j.imavis.2014.10.007

  4. Deng, J., et al.: The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking. Int. J. Comput. Vis. 127(6–7), 599–624 (2019)

    Article  Google Scholar 

  5. Fu, H., Wei, Y., Camastra, F., Arico, P., Sheng, H.: Advances in eye tracking technology: theory, algorithms, and applications. Comput. Intell. Neurosci. 2016 (2016)

    Google Scholar 

  6. Fuhl, W., Santini, T., Kasneci, G., Kasneci, E.: Pupilnet: convolutional neural networks for robust pupil detection. CoRR abs/1601.04902 (2016). http://arxiv.org/abs/1601.04902

  7. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. CoRR abs/1709.01507 (2017). http://arxiv.org/abs/1709.01507

  9. Liu, W., et al.: SSD: single shot multibox detector. CoRR abs/1512.02325 (2015). http://arxiv.org/abs/1512.02325

  10. Markuš, N., Frljak, M., Pandžić, I., Ahlberg, J., Forchheimer, R.: Eye pupil localization with an ensemble randomized trees. Pattern Recogn. 47, 578–587 (2014). https://doi.org/10.1016/j.patcog.2013.08.008

  11. Misra, D., Nalamada, T., Arasanipalai, A.U., Hou, Q.: Rotate to attend: convolutional triplet attention module. CoRR abs/2010.03045 (2020). https://arxiv.org/abs/2010.03045

  12. Mosa, A.H., Ali, M., Kyamakya, K.: A computerized method to diagnose strabismus based on a novel method for pupil segmentation. In: Proceedings of the International Symposium on Theoretical Electrical Engineering (ISTET 2013) (2013)

    Google Scholar 

  13. Mosa, A.H., Ali, M., Kyamakya, K.: A computerized method to diagnose strabismus based on a novel method for pupil segmentation. In: Proceedings of the International Symposium on Theoretical Electrical Engineering (ISTET 2013) (2013)

    Google Scholar 

  14. Nguyen, D.-L., Putro, M.D., Jo, K.-H.: Eye state recognizer using light-weight architecture for drowsiness warning. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds.) ACIIDS 2021. LNCS (LNAI), vol. 12672, pp. 518–530. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73280-6_41

    Chapter  Google Scholar 

  15. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: Bottleneck attention module (2018)

    Google Scholar 

  16. Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving convolutional neural networks via concatenated rectified linear units. CoRR abs/1603.05201 (2016), http://arxiv.org/abs/1603.05201

  17. Sharma, R., Savakis, A.: Lean histogram of oriented gradients features for effective eye detection. J. Electr. Imaging 24, 063007 (2015). https://doi.org/10.1117/1.JEI.24.6.063007

  18. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842

  19. Timm, F., Barth, E.: Accurate eye centre localisation by means of gradients. In: VISAPP (2011)

    Google Scholar 

  20. Valenti, R., Gevers, T.: Accurate eye center location through invariant isocentric patterns. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1785–1798 (2012). https://doi.org/10.1109/TPAMI.2011.251

  21. Woo, S., Park, J., Lee, J., Kweon, I.S.: CBAM: convolutional block attention module. CoRR abs/1807.06521 (2018). http://arxiv.org/abs/1807.06521

  22. Wu, Y., Ji, Q.: Facial landmark detection: a literature survey. CoRR abs/1805.05563 (2018). http://arxiv.org/abs/1805.05563

  23. Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.: Robust facial landmark detection via recurrent attentive-refinement networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 57–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_4

    Chapter  Google Scholar 

  24. Zadeh, A., Chong Lim, Y., Baltrusaitis, T., Morency, L.P.: Convolutional experts constrained local model for 3d facial landmark detection. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2519–2528 (2017)

    Google Scholar 

  25. Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: Faceboxes: a CPU real-time face detector with high accuracy. CoRR abs/1708.05234 (2017), http://arxiv.org/abs/1708.05234

Download references

Acknowledgement

This results was supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hyun Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, DL., Putro, M.D., Vo, XT., Jo, KH. (2022). Convolutional Neural Network Design for Eye Detection Under Low-Illumination. In: Sumi, K., Na, I.S., Kaneko, N. (eds) Frontiers of Computer Vision. IW-FCV 2022. Communications in Computer and Information Science, vol 1578. Springer, Cham. https://doi.org/10.1007/978-3-031-06381-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06381-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06380-0

  • Online ISBN: 978-3-031-06381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics