Nothing Special   »   [go: up one dir, main page]

Skip to main content

Eye State Recognizer Using Light-Weight Architecture for Drowsiness Warning

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12672))

Included in the following conference series:

Abstract

The eye are a very important organ in the human body. The eye area and eyes contain lots of useful information about human interaction with the environment. Many studies have relied on eye region analyzes to build the medical care, surveillance, interaction, security, and warning systems. This paper focuses on extracting eye region features to detect eye state using the light-weight convolutional neural networks with two stages: eye detection and classification. This method can apply on simple drowsiness warning system and perform well on Intel Core I7-4770 CPU @ 3.40 GHz (Personal Computer - PC) and on quad-core ARM Cortex-A57 CPU (Jetson Nano device) with 19.04 FPS and 17.20 FPS (frames per second), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The bioid face database. https://www.bioid.com/facedb. Accessed 23 Oct 2020

  2. Gi4e - gaze interaction for everybody. http://www.unavarra.es/gi4e/databases?languageId=1. Accessed 23 Oct 2020

  3. Road traffic injuries. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. Accessed 22 Oct 2020

  4. Bulling, A., Ward, J., Gellersen, H., Tröster, G.: Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Pattern Anal. Mach. Intell. 33, 741–753 (2011)

    Article  Google Scholar 

  5. Champaty, B., Pal, K., Dash, A.: Functional electrical stimulation using voluntary eyeblink for foot drop correction. In: 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy, pp. 1–4 (2013). https://doi.org/10.1109/AICERA-ICMiCR.2013.6575966

  6. Chang, W., Lim, J., Im, C.: An unsupervised eye blink artifact detection method for real-time electroencephalogram processing. Physiol. Meas. 37(3), 401–17 (2016)

    Article  Google Scholar 

  7. Colombo, C., Comanducci, D., Bimbo, A.D.: Robust tracking and remapping of eye appearance with passive computer vision. ACM Trans. Multimedia Comput. Commun. Appl. 3, 2:1–2:20 (2007)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  9. Hsieh, C.S., Tai, C.C.: An improved and portable eye-blink duration detection system to warn of driver fatigue. Instrum. Sci. Technol. 41(5), 429–444 (2013). https://doi.org/10.1080/10739149.2013.796560

    Article  Google Scholar 

  10. Jo, J., Lee, S., Jung, H., Park, K., Kim, J.: Vision-based method for detecting driver drowsiness and distraction in driver monitoring system. Opt. Eng. 50, 7202 (2011). https://doi.org/10.1117/1.3657506

    Article  Google Scholar 

  11. Kim, K.W., Lee, W.O., Kim, Y.G., Hong, H.G., Lee, E.C., Park, K.R.: Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes. Opt. Eng. 54(3), 1–19 (2015). https://doi.org/10.1117/1.OE.54.3.033103

    Article  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  13. Królak, A., Strumiłło, P.: Eye-blink detection system for human–computer interaction. Univers. Access Inf. Soc. 11(4), 409–419 (2012). https://doi.org/10.1007/s10209-011-0256-6

    Article  Google Scholar 

  14. Kégl, B.: The return of adaboost.mh: multi-class hamming trees (2013)

    Google Scholar 

  15. Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N., Laurendeau, D.: Real-time eye blink detection with GPU-based sift tracking. In: Fourth Canadian Conference on Computer and Robot Vision (CRV 2007), pp. 481–487 (2007). https://doi.org/10.1109/CRV.2007.54

  16. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  17. Lee, W., Lee, E.C., Park, K.: Blink detection robust to various facial poses. J. Neurosci. Methods 193, 356–72 (2010). https://doi.org/10.1016/j.jneumeth.2010.08.034

    Article  Google Scholar 

  18. Mita, T., Kaneko, T., Hori, O.: Joint Haar-like features for face detection. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005) Volume 1, vol. 2, pp. 1619–1626 (2005). https://doi.org/10.1109/ICCV.2005.129

  19. Mohanakrishnan, J., Nakashima, S., Odagiri, J., Shanshan, Yu.: A novel blink detection system for user monitoring. In: 2013 1st IEEE Workshop on User-Centered Computer Vision (UCCV), pp. 37–42 (2013). https://doi.org/10.1109/UCCV.2013.6530806

  20. Nguyen, D.L., Putro, M.D., Jo, K.H.: Eyes status detector based on light-weight convolutional neural networks supporting for drowsiness detection system. In: IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, pp. 477–482 (2020). https://doi.org/10.1109/IECON43393.2020.9254858

  21. Ramzan, M., Khan, H.U., Awan, S.M., Ismail, A., Ilyas, M., Mahmood, A.: A survey on state-of-the-art drowsiness detection techniques. IEEE Access 7, 61904–61919 (2019). https://doi.org/10.1109/ACCESS.2019.2914373

    Article  Google Scholar 

  22. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497

  23. Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving convolutional neural networks via concatenated rectified linear units. CoRR abs/1603.05201 (2016). http://arxiv.org/abs/1603.05201

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015)

    Google Scholar 

  25. Song, F., Tan, X., Liu, X., Chen, S.: Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients. Pattern Recogn. 47(9), 2825–2838 (2014). https://doi.org/10.1016/j.patcog.2014.03.024

    Article  Google Scholar 

  26. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). http://arxiv.org/abs/1409.4842

  27. Trutoiu, L.C., Carter, E.J., Matthews, I., Hodgins, J.K.: Modeling and animating eye blinks. ACM Trans. Appl. Percept. 8(3) (2011). https://doi.org/10.1145/2010325.2010327

  28. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004). https://doi.org/10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

  29. Wu, J., Trivedi, M.M.: An eye localization, tracking and blink pattern recognition system: algorithm and evaluation. TOMCCAP 6 (2010). https://doi.org/10.1145/1671962.1671964

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the government (MSIT).(No.2020R1A2C2008972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy-Linh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, DL., Putro, M.D., Jo, KH. (2021). Eye State Recognizer Using Light-Weight Architecture for Drowsiness Warning. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics