Abstract
Nonogram is a logic puzzle consisting of a rectangular grid with an objective to color every cell black or white such that the lengths of blocks of consecutive black cells in each row and column are equal to the given numbers. In 2010, Chien and Hon developed the first physical zero-knowledge proof for Nonogram, which allows a prover to physically show that he/she knows a solution of the puzzle without revealing it. However, their protocol requires special tools such as scratch-off cards and a machine to seal the cards, which are difficult to find in everyday life, making the protocol impractical. Their protocol also has a nonzero soundness error. In this paper, we propose a more practical physical zero-knowledge proof for Nonogram that uses only a deck of regular paper cards and also has perfect soundness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)
Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8
Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12
Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729 (1991)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Google Play: Nonogram. https://play.google.com/store/search?q=Nonogram
Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theor. Comput. Syst. 44(2), 245–268 (2009)
Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 17:1–17:23 (2020)
Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND protocol with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_14
Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop’’ condition. Theor. Comput. Sci. 888, 41–55 (2021)
Miyahara, D.: Card-Based ZKP protocols for Takuzu and Juosan. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 20:1–20:21 (2020)
Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-Based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102.A(9), 1072–1078 (2019)
Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) Fun with Algorithms. FUN 2014. LNCS, vol 8496. Springer, Cham. https://doi.org/10.1007/978-3-319-07890-8_27
Mizuki, T., Sone, H.: Six-Card secure AND and Four-Card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36
Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for connectivity: applications to Nurikabe and Hitori. In: Proceedings of the 17th Conference on Computability in Europe (CiE), pp. 373–384 (2021)
Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for Suguru Puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_19
Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. In: Chen, C.-Y., Hon, W.-K., Hung, L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 631–642. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89543-3_52
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and \(k\) vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_24
Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_10
Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)
Shinagawa, K., et al.: Card-Based protocols using regular polygon cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017)
Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2019). https://doi.org/10.1007/s10207-019-00463-w
Ueda, N., Nagao, T.: NP-completeness Results for NONOGRAM via Parsimonious Reductions. Technical Report TR96-0008, Department of Computer Science, Tokyo Institute of Technology (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ruangwises, S. (2021). An Improved Physical ZKP for Nonogram. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-92681-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92680-9
Online ISBN: 978-3-030-92681-6
eBook Packages: Computer ScienceComputer Science (R0)