Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Improved Physical ZKP for Nonogram

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13135))

Abstract

Nonogram is a logic puzzle consisting of a rectangular grid with an objective to color every cell black or white such that the lengths of blocks of consecutive black cells in each row and column are equal to the given numbers. In 2010, Chien and Hon developed the first physical zero-knowledge proof for Nonogram, which allows a prover to physically show that he/she knows a solution of the puzzle without revealing it. However, their protocol requires special tools such as scratch-off cards and a machine to seal the cards, which are difficult to find in everyday life, making the protocol impractical. Their protocol also has a nonzero soundness error. In this paper, we propose a more practical physical zero-knowledge proof for Nonogram that uses only a deck of regular paper cards and also has perfect soundness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)

    Google Scholar 

  2. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

    Chapter  Google Scholar 

  3. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12

    Chapter  Google Scholar 

  4. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    Chapter  Google Scholar 

  5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729 (1991)

    Article  Google Scholar 

  6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  7. Google Play: Nonogram. https://play.google.com/store/search?q=Nonogram

  8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theor. Comput. Syst. 44(2), 245–268 (2009)

    Article  MathSciNet  Google Scholar 

  9. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 17:1–17:23 (2020)

    Google Scholar 

  10. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND protocol with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_14

    Chapter  Google Scholar 

  11. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop’’ condition. Theor. Comput. Sci. 888, 41–55 (2021)

    Article  MathSciNet  Google Scholar 

  12. Miyahara, D.: Card-Based ZKP protocols for Takuzu and Juosan. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 20:1–20:21 (2020)

    Google Scholar 

  13. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-Based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102.A(9), 1072–1078 (2019)

    Google Scholar 

  14. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) Fun with Algorithms. FUN 2014. LNCS, vol 8496. Springer, Cham. https://doi.org/10.1007/978-3-319-07890-8_27

  15. Mizuki, T., Sone, H.: Six-Card secure AND and Four-Card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  16. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for connectivity: applications to Nurikabe and Hitori. In: Proceedings of the 17th Conference on Computability in Europe (CiE), pp. 373–384 (2021)

    Google Scholar 

  17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge proof for Suguru Puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_19

    Chapter  Google Scholar 

  18. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. In: Chen, C.-Y., Hon, W.-K., Hung, L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 631–642. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89543-3_52

    Chapter  Google Scholar 

  19. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and \(k\) vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

    Article  Google Scholar 

  20. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_24

    Chapter  Google Scholar 

  21. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_10

    Chapter  Google Scholar 

  22. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

    Article  MathSciNet  Google Scholar 

  23. Shinagawa, K., et al.: Card-Based protocols using regular polygon cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017)

    Google Scholar 

  24. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2019). https://doi.org/10.1007/s10207-019-00463-w

    Article  Google Scholar 

  25. Ueda, N., Nagao, T.: NP-completeness Results for NONOGRAM via Parsimonious Reductions. Technical Report TR96-0008, Department of Computer Science, Tokyo Institute of Technology (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruangwises, S. (2021). An Improved Physical ZKP for Nonogram. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics