Nothing Special   »   [go: up one dir, main page]

Skip to main content

Physical Zero-Knowledge Proof for Suguru Puzzle

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2020)

Abstract

Suguru is a paper and pencil puzzle invented by Naoki Inaba. The goal of the game is to fulfil a grid with numbers between 1 and 5 and to respect three simple constraints. In this paper we design a physical Zero-Knowledge Proof (ZKP) protocol for Suguru. A ZKP protocol allows a prover (P) to prove that he knows a solution of a Suguru grid to a verifier (V) without leaking any information on the solution. For constructing such a physical ZKP protocol, we only rely on a small number of physical cards and an adapted encoding. For a grid of Suguru with n cells, we only use \(5n+5\) cards. Moreover, we prove the three classical security properties of a ZKP: completeness, extractability, and zero-knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Moreover, if \(\mathcal {P}\) is NP-complete, then the ZKP should be run in a polynomial time  [7]. Otherwise it might be easier to find a solution than proving that a solution is a correct solution, making the proof pointless.

  2. 2.

    This implies the standard soundness property, which ensures that if there exists no solution of the puzzle, then the prover is not able to convince the verifier regardless of the prover’s behavior.

  3. 3.

    https://www.nikoli.co.jp/en/puzzles/sudoku.html.

  4. 4.

    For example, in Fig. 1 the upper left region can be directly completed with a 1.

  5. 5.

    We could have encoded each cell with a total of \(\ell \) cards where \(\ell \) is the number of cells in the region (thus, a region with two cells has its cell encoded with only two cards, a red and a black). Yet, this would lead to inconstancy in the encoding rule which is required in the neighbour verification.

  6. 6.

    http://nikoli.co.jp/en/puzzles/makaro.html.

  7. 7.

    http://www.nikoli.co.jp/en/puzzles/shakashaka.html.

  8. 8.

    https://www.nikoli.co.jp/en/puzzles/shikaku.html.

References

  1. Bultel, X., Dreier, J., Dumas, J., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.) 8th International Conference on Fun with Algorithms, FUN 2016, June 8–10, 2016, La Maddalena, Italy. LIPIcs, vol. 49, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.FUN.2016.8

  2. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

    Chapter  Google Scholar 

  3. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18

    Chapter  Google Scholar 

  4. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_4

    Chapter  Google Scholar 

  5. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    Chapter  Google Scholar 

  6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 174–187, October 1986. https://doi.org/10.1109/SFCS.1986.47

  7. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in zero-knowledge and a methodology of cryptographic protocol design (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_11

    Chapter  Google Scholar 

  8. Goldwasser, S., Micali, S., Rackoff, C.: Knowledge complexity of interactive proof-systems. In: Conference Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 291–304 (1985). https://doi.org/10.1145/3335741.3335750

  9. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of sudoku puzzles. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 166–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3_16

    Chapter  Google Scholar 

  10. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  11. Iwamoto, C., Haruishi, M., Ibusuki, T.: Herugolf and Makaro are NP-complete. In: Ito, H., Leonardi, S., Pagli, L., Prencipe, G. (eds.) Fun with Algorithms 2018. LIPIcs, vol. 100, pp. 24:1–24:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  12. Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for Slitherlink: how to perform physical topology-preserving computation. In: Heng, S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34339-2_8

    Chapter  Google Scholar 

  13. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms 2020. LIPIcs (2020)

    Google Scholar 

  14. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fund. Electron. Commun. Comput. Sci. E102.A(9), 1072–1078 (2019). https://doi.org/10.1587/transfun.E102.A.1072

  15. Quisquater, J.-J., et al.: How to explain zero-knowledge protocols to your children. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 628–631. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_60

    Chapter  Google Scholar 

  16. Romero-Tris, C., Castellà-Roca, J., Viejo, A.: Multi-party private web search with untrusted partners. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 261–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31909-9_15

    Chapter  Google Scholar 

  17. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms 2020. LIPIcs (2020)

    Google Scholar 

  18. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. (2020). https://doi.org/10.1016/j.tcs.2020.05.036, http://www.sciencedirect.com/science/article/pii/S0304397520303200

  19. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). https://doi.org/10.1145/146585.146609

Download references

Acknowledgements

We thank the anonymous referees, whose comments have helped us to improve the presentation of the paper. This work was supported in part by JSPS KAKENHI Grant Number JP19J21153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Miyahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T. (2020). Physical Zero-Knowledge Proof for Suguru Puzzle. In: Devismes, S., Mittal, N. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2020. Lecture Notes in Computer Science(), vol 12514. Springer, Cham. https://doi.org/10.1007/978-3-030-64348-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64348-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64347-8

  • Online ISBN: 978-3-030-64348-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics