Nothing Special   »   [go: up one dir, main page]

Skip to main content

WiP: Privacy Enabled Biometric Authentication Based on Proof of Decryption Techniques

  • Conference paper
  • First Online:
Information Systems Security (ICISS 2021)

Abstract

Biometric authentication systems are widely used for authenticating users, especially in the areas like law enforcement, healthcare, airport security etc. Two major concerns arise in any biometric authentication system: (i) Privacy of user’s biometrics, which do not change much over time (ii) Trust assumption between user and server. To address the former issue privacy enabled biometric authentication schemes are designed, wherein as part of the authentication, encrypted biometrics are sent to the server and server then computes the authentication result on encrypted biometrics. The latter issue is addressed by using trusted third party or trusted execution environment (TEE), which is not secure. To overcome this, we propose a novel method, where server can authenticate the user in a privacy preserving manner without the need for any trusted party or TEE. We propose 3 novel proof of decryption based techniques: (i) HMAC (Hash based MAC) of the authentication result on encrypted data (ii) VC (Verifiable Computing) based approach and (iii) Blinding techniques. Using these approaches we eliminate the need for trust assumptions between user and server in semi-honest setting i.e. they execute the protocol correctly but are trying to learn more about data (server) or tamper with the authentication (user). The proposed protocol is agnostic to any authentication method used by server, hence our contribution is two-fold. We analyze security, complexity and practicality of each of these approaches and compare with the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use user and client interchangeably throughout this paper.

References

  1. Pepper (2014). https://github.com/pepper-project/pepper

  2. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. 2018, 46 (2018)

    Google Scholar 

  3. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von neumann architecture. In: Proceedings of the 23rd USENIX Conference on Security Symposium, SEC 2014, pp. 781–796. USENIX Association, USA (2014)

    Google Scholar 

  4. Bhattasali, T., Saeed, K., Chaki, N., Chaki, R.: A survey of security and privacy issues for biometrics based remote authentication in cloud. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp. 112–121. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45237-0_12

    Chapter  Google Scholar 

  5. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 315–334 (2018)

    Google Scholar 

  6. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  7. Das, A.K., Wazid, M., Kumar, N., Vasilakos, A.V., Rodrigues, J.J.P.C.: Biometrics-based privacy-preserving user authentication scheme for cloud-based industrial internet of things deployment. IEEE Internet of Things J. 5(6), 4900–4913 (2018)

    Article  Google Scholar 

  8. Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomorphic evaluation of block ciphers using prince. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 208–220. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_17

    Chapter  Google Scholar 

  9. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. 2012, 144 (2012)

    Google Scholar 

  10. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: IACR (2015)

    Google Scholar 

  12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  13. Shaik, I., Kumar Singh, A., Narumanchi, H., Emmadi, N., Bhattachar, R.M.A.: A recommender system for efficient implementation of privacy preserving machine learning primitives based on FHE. In: Dolev, S., Kolesnikov, V., Lodha, S., Weiss, G. (eds.) CSCML 2020. LNCS, vol. 12161, pp. 193–218. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49785-9_13

    Chapter  Google Scholar 

  14. Jindal, A.K., Shaik, I., Vasudha, V., Chalamala, S.R., Ma, R., Lodha, S.: Secure and privacy preserving method for biometric template protection using fully homomorphic encryption. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 1127–1134 (2020)

    Google Scholar 

  15. Kolberg, J., Drozdowski, P., Gomez-Barrero, M., Rathgeb, C. Busch, C.: Efficiency analysis of post-quantum-secure face template protection schemes based on homomorphic encryption. In: 2020 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–4 (2020)

    Google Scholar 

  16. Kumar, N., et al.: Cancelable biometrics: a comprehensive survey. Artif. Intell. 53, 3403–3446 (2019)

    Google Scholar 

  17. Nguyen, T.A.T., Dang, T.K., Nguyen, D.T.: A new biometric template protection using random orthonormal projection and fuzzy commitment. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 723–733. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_58

    Chapter  Google Scholar 

  18. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252 (2013)

    Google Scholar 

  19. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: 2015 Network and Distributed System Security Symposium (NDSS), pp. 1–14 (2015)

    Google Scholar 

  20. Riscure. Security pitfalls in tee (2020). https://www.riscure.com/publication/security-pitfalls-in-tee-development

  21. Eloi Sanfelix. Tee exploitation-exploiting trusted apps on samsung’s tee (2019). https://labs.bluefrostsecurity.de/files/tee.pdf

  22. Song, X., Chen, Z., Sun, D.: Iris ciphertext authentication system based on fully homomorphic encryption. J. Inf. Process. Syst. 16(3), 599–611 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imtiyazuddin Shaik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Syed, H., Shaik, I., Emmadi, N., Narumanchi, H., Thakur, M.S.D., Bhattachar, R.M.A. (2021). WiP: Privacy Enabled Biometric Authentication Based on Proof of Decryption Techniques. In: Tripathy, S., Shyamasundar, R.K., Ranjan, R. (eds) Information Systems Security. ICISS 2021. Lecture Notes in Computer Science(), vol 13146. Springer, Cham. https://doi.org/10.1007/978-3-030-92571-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92571-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92570-3

  • Online ISBN: 978-3-030-92571-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics