Abstract
We present the homomorphic evaluation of the Prince block cipher. Our leveled implementation is based on a generalization of NTRU. We are motivated by the drastic bandwidth savings that may be achieved by scheme conversion. To unlock this advantage we turn to lightweight ciphers such as Prince. These ciphers were designed from scratch to yield fast and compact implementations on resource-constrained embedded platforms. We show that some of these ciphers have the potential to enable near practical homomorphic evaluation of block ciphers. Indeed, our analysis shows that Prince can be implemented using only a 24 level deep circuit. Using an NTRU based implementation we achieve an evaluation time of 3.3 s per Prince block – one and two orders of magnitude improvement over homomorphic AES implementations achieved using NTRU, and BGV-style homomorphic encryption libraries, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation (1978)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on the Theory of Computing (STOC), pp. 169–178 (2009)
Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Department of Computer Science, Stanford University (2009)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)
Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)
Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. Manuscript (2011)
Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations (2011). http://eprint.iacr.org/2011/133
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS, pp. 309–325 (2012)
Alt-López, A., Tromer E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th STOC, pp. 1219–1234. ACM (2012)
Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011)
Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013)
Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012)
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)
Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES Evaluation using NTRU, IACR ePrint Archive. Technical report 2014/039 January 2014. http://eprint.iacr.org/2014/039.pdf
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE (2011)
Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical?. In: Proceedings of the 3rd ACM CCSW (Cloud Computing Security Workshop), ACM (2011)
Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)
Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.: Compact implementation and performance evaluation of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)
Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)
Eisenbarth, T., Paar, C., Poschmann, A., Kumar, S., Uhsadel, L.: A Survey of lightweight-cryptography implementations. IEEE Des. Test Comput. 24(6), 522–533 (2007)
Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption standard. Information Security and Cryptography, vol. XVII, pp. 1–238. Springer, Heidelberg (2002)
Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)
Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable encryption algorithm for small embedded applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)
De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)
Canniere, C.D., Dunkelman, O., Knezevic, M.: The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/
Acknowledgments
Funding for this research was in part provided by the US National Science Foundation CNS Awards #1117590, #1319130, and #1261399.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 IFCA/Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B. (2014). Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds) Financial Cryptography and Data Security. FC 2014. Lecture Notes in Computer Science(), vol 8438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44774-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-662-44774-1_17
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44773-4
Online ISBN: 978-3-662-44774-1
eBook Packages: Computer ScienceComputer Science (R0)