Nothing Special   »   [go: up one dir, main page]

Skip to main content

QCB: Efficient Quantum-Secure Authenticated Encryption

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Abstract

It was long thought that symmetric cryptography was only mildly affected by quantum attacks, and that doubling the key length was sufficient to restore security. However, recent works have shown that Simon’s quantum period finding algorithm breaks a large number of MAC and authenticated encryption algorithms when the adversary can query the MAC/encryption oracle with a quantum superposition of messages. In particular, the OCB authenticated encryption mode is broken in this setting, and no quantum-secure mode is known with the same efficiency (rate-one and parallelizable).

In this paper we generalize the previous attacks, show that a large class of OCB-like schemes is unsafe against superposition queries, and discuss the quantum security notions for authenticated encryption modes. We propose a new rate-one parallelizable mode named QCB inspired by TAE and OCB and prove its security against quantum superposition queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For example, indistinguishability under quantum encryption queries can be achieved by the Counter Mode from a classical PRP assumption [3].

  2. 2.

    Three versions of OCB have been proposed. We focus here on the last one, OCB3, while all three suffer from similar superposition attacks.

  3. 3.

    One attack on OCB presented in [21] was partial, as it assumed without any mention the use of Lemma 2.

  4. 4.

    Theorem 6.3 in [5] is about related-key attacks, but this implies a corresponding result for the key-tweak insertion TBC, see Theorem 7.1 of the same paper.

  5. 5.

    There is only one case in which the use of a counter may enable an adversary to choose his IVs adaptively: he may wait for the counter to increase in order to reach a wanted IV. But the IV increases only when a message is encrypted so waiting for an IV increase should be essentially considered as costly as performing a query, which implies that the IVs that will be used will be in \(\{IV_1,\dots ,IV_1 + (q-1)\}\) .

References

  1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_27

    Chapter  Google Scholar 

  2. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_3

    Chapter  Google Scholar 

  3. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_4

    Chapter  MATH  Google Scholar 

  4. Beierle, C., et al.: Alzette: a 64-Bit ARX-box. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 419–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_15

    Chapter  Google Scholar 

  5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31

    Chapter  Google Scholar 

  6. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  7. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. In: STOC, pp. 11–20. ACM (1993)

    Google Scholar 

  8. Bhaumik, R., et al.: QCB: efficient quantum-secure authenticated encryption. IACR Cryptol. ePrint Arch, p. 1304 (2020). https://eprint.iacr.org/2020/1304

  9. Bhaumik, R., Nandi, M.: Improved security for OCB3. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 638–666. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_22

    Chapter  Google Scholar 

  10. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35

    Chapter  Google Scholar 

  11. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    Chapter  MATH  Google Scholar 

  12. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_20

    Chapter  Google Scholar 

  13. Bonnetain, X., Leurent, G., Naya-Plasencia, M., Schrottenloher, A.: Quantum linearization attacks. In: The Proceedings of ASIACRYPT (2021)

    Google Scholar 

  14. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and implications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_19

    Chapter  Google Scholar 

  15. Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. IACR Trans. Symm. Cryptol. 2020(S1), 160–207 (2020)

    Article  Google Scholar 

  16. Carstens, T.V., Ebrahimi, E., Tabia, G., Unruh, D.: On quantum indistinguishability under chosen plaintext attack. Cryptology ePrint Archive, Report 2020/596 (2020). https://eprint.iacr.org/2020/596

  17. Chevalier, C., Ebrahimi, E., Vu, Q.H.: On the security notions for encryption in a quantum world. QCrypt 2020 (2020). https://eprint.iacr.org/2020/237

  18. Hosoyamada, A., Iwata, T.: Provably quantum-secure tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2021(1), 337–377 (2021). https://doi.org/10.46586/tosc.v2021.i1.337-377

  19. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_21

    Chapter  Google Scholar 

  20. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_10

    Chapter  Google Scholar 

  21. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  22. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg, February 2011. https://doi.org/10.1007/978-3-642-21702-9_18

  23. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3

    Chapter  Google Scholar 

  24. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3), 588–613 (2011)

    Article  MathSciNet  Google Scholar 

  25. Mossayebi, S., Schack, R.: Concrete security against adversaries with quantum superposition access to encryption and decryption oracles (2016). arxiv.org/1609.03780

  26. National Institute of Standards and Technology (NIST): Submission requirements and evaluation criteria for the post-quantum cryptography standardization process, December 2016

    Google Scholar 

  27. National Institute of Standards and Technology (NIST): Submission requirements and evaluation criteria for the lightweight cryptography standardization process, August 2018

    Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum information and quantum computation, vol. 2(8), p. 23. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  29. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_2

    Chapter  Google Scholar 

  30. Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process. Lett. 115(1), 40–44 (2015)

    Article  Google Scholar 

  31. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 17(1 & 2), 65–78 (2017)

    MathSciNet  Google Scholar 

  32. Simon, D.R.: On the power of quantum computation. In: 35th FOCS, pp. 116–123. IEEE Computer Society Press, November 1994

    Google Scholar 

  33. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7 & 8), 557–567 (2015)

    MathSciNet  Google Scholar 

  34. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the reviewers from EUROCRYPT 2021, CRYPTO 2021 and ASIACRYPT 2021 for their helpful feedback and insights, which helped us improve the paper and correct technical errors. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 714294 - acronym QUASYModo). A. S. is supported by ERC-ADG-ALGSTRONGCRYPTO (project 740972).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ritam Bhaumik , Xavier Bonnetain , André Chailloux , Gaëtan Leurent , María Naya-Plasencia , André Schrottenloher or Yannick Seurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhaumik, R. et al. (2021). QCB: Efficient Quantum-Secure Authenticated Encryption. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13090. Springer, Cham. https://doi.org/10.1007/978-3-030-92062-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92062-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92061-6

  • Online ISBN: 978-3-030-92062-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics