Abstract
It was long thought that symmetric cryptography was only mildly affected by quantum attacks, and that doubling the key length was sufficient to restore security. However, recent works have shown that Simon’s quantum period finding algorithm breaks a large number of MAC and authenticated encryption algorithms when the adversary can query the MAC/encryption oracle with a quantum superposition of messages. In particular, the OCB authenticated encryption mode is broken in this setting, and no quantum-secure mode is known with the same efficiency (rate-one and parallelizable).
In this paper we generalize the previous attacks, show that a large class of OCB-like schemes is unsafe against superposition queries, and discuss the quantum security notions for authenticated encryption modes. We propose a new rate-one parallelizable mode named QCB inspired by TAE and OCB and prove its security against quantum superposition queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For example, indistinguishability under quantum encryption queries can be achieved by the Counter Mode from a classical PRP assumption [3].
- 2.
Three versions of OCB have been proposed. We focus here on the last one, OCB3, while all three suffer from similar superposition attacks.
- 3.
- 4.
Theorem 6.3 in [5] is about related-key attacks, but this implies a corresponding result for the key-tweak insertion TBC, see Theorem 7.1 of the same paper.
- 5.
There is only one case in which the use of a counter may enable an adversary to choose his IVs adaptively: he may wait for the counter to increase in order to reach a wanted IV. But the IV increases only when a message is encrypted so waiting for an IV increase should be essentially considered as costly as performing a query, which implies that the IVs that will be used will be in \(\{IV_1,\dots ,IV_1 + (q-1)\}\) .
References
Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_27
Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_3
Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_4
Beierle, C., et al.: Alzette: a 64-Bit ARX-box. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 419–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_15
Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31
Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)
Bernstein, E., Vazirani, U.V.: Quantum complexity theory. In: STOC, pp. 11–20. ACM (1993)
Bhaumik, R., et al.: QCB: efficient quantum-secure authenticated encryption. IACR Cryptol. ePrint Arch, p. 1304 (2020). https://eprint.iacr.org/2020/1304
Bhaumik, R., Nandi, M.: Improved security for OCB3. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 638–666. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_22
Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35
Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21
Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_20
Bonnetain, X., Leurent, G., Naya-Plasencia, M., Schrottenloher, A.: Quantum linearization attacks. In: The Proceedings of ASIACRYPT (2021)
Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and implications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_19
Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. IACR Trans. Symm. Cryptol. 2020(S1), 160–207 (2020)
Carstens, T.V., Ebrahimi, E., Tabia, G., Unruh, D.: On quantum indistinguishability under chosen plaintext attack. Cryptology ePrint Archive, Report 2020/596 (2020). https://eprint.iacr.org/2020/596
Chevalier, C., Ebrahimi, E., Vu, Q.H.: On the security notions for encryption in a quantum world. QCrypt 2020 (2020). https://eprint.iacr.org/2020/237
Hosoyamada, A., Iwata, T.: Provably quantum-secure tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2021(1), 337–377 (2021). https://doi.org/10.46586/tosc.v2021.i1.337-377
Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_21
Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_10
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8
Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg, February 2011. https://doi.org/10.1007/978-3-642-21702-9_18
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3), 588–613 (2011)
Mossayebi, S., Schack, R.: Concrete security against adversaries with quantum superposition access to encryption and decryption oracles (2016). arxiv.org/1609.03780
National Institute of Standards and Technology (NIST): Submission requirements and evaluation criteria for the post-quantum cryptography standardization process, December 2016
National Institute of Standards and Technology (NIST): Submission requirements and evaluation criteria for the lightweight cryptography standardization process, August 2018
Nielsen, M.A., Chuang, I.L.: Quantum information and quantum computation, vol. 2(8), p. 23. Cambridge University Press, Cambridge (2000)
Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_2
Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process. Lett. 115(1), 40–44 (2015)
Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 17(1 & 2), 65–78 (2017)
Simon, D.R.: On the power of quantum computation. In: 35th FOCS, pp. 116–123. IEEE Computer Society Press, November 1994
Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7 & 8), 557–567 (2015)
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9
Acknowledgements
We thank the reviewers from EUROCRYPT 2021, CRYPTO 2021 and ASIACRYPT 2021 for their helpful feedback and insights, which helped us improve the paper and correct technical errors. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 714294 - acronym QUASYModo). A. S. is supported by ERC-ADG-ALGSTRONGCRYPTO (project 740972).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Bhaumik, R. et al. (2021). QCB: Efficient Quantum-Secure Authenticated Encryption. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13090. Springer, Cham. https://doi.org/10.1007/978-3-030-92062-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-92062-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92061-6
Online ISBN: 978-3-030-92062-3
eBook Packages: Computer ScienceComputer Science (R0)