Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analysing Multiobjective Optimization Using Evolutionary Path Length Correlation

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

  • 2001 Accesses

Abstract

Recently, a number of studies have attempted to characterize the interaction between objectives and decision variables in multiobjective problems. In this paper, we continue this line of research by focusing specifically on quantifying observable differences in the ease of optimizing extreme solutions (i.e. solutions on the limits of the Pareto front). We propose an evolutionary path length correlation (EPLC) measurement in the decision variable space that is computed by tracing the evolutionary history of solutions on the Pareto front. We draw on the length scale measure and extend the well-known fitness distance correlation to multiobjective optimization problems. Here, the overarching goal is to investigate the emergent dynamics of specific problem–algorithm combinations, rather than the characterization of the search landscape per se. We evaluate the efficacy of the EPLC using benchmark continuous multiobjective problems and combinatorial problems with controllable objective interactions and known Pareto optima. In some problems, observable differences in the convergence to extreme solutions in each objective can be captured using the EPLC. Our results go some way towards furthering our understanding of how specific algorithms traverse the landscape, given interactions between both decision variables and objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

    Article  Google Scholar 

  2. Bradstreet, L., Barone, L., While, L., Huband, S., Hingston, P.: Use of the WFG toolkit and PISA for comparison of MOEAs. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, MCDM 2007, pp. 382–389. No. MCDM (2007)

    Google Scholar 

  3. Collard, P., Gaspar, A., Gaspar, A., Clergue, M., Escazut, C.: Fitness distance correlation, as statistical measure of genetic algorithm difficulty, revisited. In: Proceedings of the European Conference on Artificial Intelligence, pp. 650–654. Wiley (1998)

    Google Scholar 

  4. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Problem features versus algorithm performance on rugged multiobjective combinatorial fitness landscapes. Evol. Comput. 25(4), 555–585 (2017)

    Article  Google Scholar 

  5. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London (2011). https://doi.org/10.1007/978-0-85729-652-8_1

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

  8. Garrett, D., Dasgupta, D.: Multiobjective landscape analysis and the generalized assignment problem. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007. LNCS, vol. 5313, pp. 110–124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92695-5_9

    Chapter  Google Scholar 

  9. Hart, E., Ross, P.: Gavel-a new tool for genetic algorithm visualization. IEEE Trans. Evol. Comput. 5(4), 335–348 (2001)

    Article  Google Scholar 

  10. Hoos, H.H., Stützle, T.: Stochastic local search: foundations and applications. Elsevier (2004)

    Google Scholar 

  11. Huband, S., Hingston, P., Barone, L.: A review of multi-objective test problems and a scalable test problem toolkit a review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evolution. Comput. 10(2006), 477–506 (2006), http://ro.ecu.edu.au/ecuworks/2022

  12. Jiang, S., Cai, Z., Zhang, J., Ong, Y.S.: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors. In: Proceedings - 2011 7th International Conference on Natural Computation, ICNC 2011, vol. 3, pp. 1260–1264 (2011)

    Google Scholar 

  13. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192 (1995)

    Google Scholar 

  14. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  15. Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_21

    Chapter  Google Scholar 

  16. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-aware performance prediction for evolutionary multi-objective optimization. IEEE Trans. Evolution. Comput. (2019)

    Google Scholar 

  17. Miettinen, K.: Nonlinear multiobjective optimization. Intl. Ser. in Operations Research & Management Science: 12, Springer, New York (1998). https://doi.org/10.1007/978-1-4615-5563-6

  18. Morgan, R., Gallagher, M.: Analysing and characterising optimization problems using length scale. Soft. Comput. 21(7), 1735–1752 (2015). https://doi.org/10.1007/s00500-015-1878-z

    Article  Google Scholar 

  19. Moser, I., Gheorghita, M., Aleti, A.: Identifying features of fitness landscapes and relating them to problem difficulty. Evol. Comput. 25(3), 407–437 (2017)

    Article  Google Scholar 

  20. Müller, C.L., Sbalzarini, I.F.: Global characterization of the CEC 2005 fitness landscapes using fitness-distance analysis. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 294–303. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20525-5_30

  21. Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf. Sci. 317, 224–245 (2015)

    Article  Google Scholar 

  22. Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biobjective qap with correlated flow matrices. Eur. J. Oper. Res. 169(3), 943–959 (2006)

    Article  MathSciNet  Google Scholar 

  23. Poli, R., Vanneschi, L.: Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1335–1342. ACM (2007)

    Google Scholar 

  24. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. (CSUR) 41(1), 6 (2009)

    Article  Google Scholar 

  25. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a MATlab platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12, 73–87 (11 2017)

    Google Scholar 

  26. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  28. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Herring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herring, D., Pakravan, D., Kirley, M. (2022). Analysing Multiobjective Optimization Using Evolutionary Path Length Correlation. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics