Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction

  • Chapter
  • First Online:
Multi-objective Evolutionary Optimisation for Product Design and Manufacturing

Abstract

As the name suggests, multi-objective optimisation involves optimising a number of objectives simultaneously. The problem becomes challenging when the objectives are of conflicting characteristics to each other, that is, the optimal solution of an objective function is different from that of the other. In the course of solving such problems, with or without the presence of constraints, these problems give rise to a set of trade-off optimal solutions, popularly known as Pareto-optimal solutions. Because of the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary algorithms using a population approach in its search procedure. Starting with parameterised procedures in early 90s, the so-called evolutionary multi-objective optimisation (EMO) algorithms is now an established field of research and application with many dedicated texts and edited books, commercial softwares and numerous freely downloadable codes, a biannual conference series running successfully since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this chapter, we provide a brief introduction to its operating principles and outline the current research and application studies of evolutionary multi-objective optmisation (EMO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K. (2001). Multi-objective optimisation using evolutionary algorithms. Chichester, UK: Wiley.

    Google Scholar 

  2. Goldberg, D. E. (1989). Genetic algorithms for search, optimisation, and machine learning. Reading, MA: Addison-Wesley.

    Google Scholar 

  3. Deb, K., Reddy, A. R., & Singh, G. (2003). Optimal scheduling of casting sequence using genetic algorithms. Journal of Materials and Manufacturing Processes 18(3):409–432.

    Article  Google Scholar 

  4. Deb, K. (1999). An introduction to genetic algorithms. S \(\bar{a}\) dhan \(\bar{a}\). 24(4):293–315

    Google Scholar 

  5. Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex Systems 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  6. Deb, K., Anand, A., Joshi, D. (2002). A computationally efficient evolutionary algorithm for real-parameter optimisation. Evolutionary Computation Journal 10(4):371–395

    Article  Google Scholar 

  7. Storn, R., Price, K. (1997). Differential evolution—A fast and efficient heuristic for global optimisation over continuous spaces. Journal of Global Optimization 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  8. Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Network 5(1):96–101

    Article  Google Scholar 

  9. Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer.

    Google Scholar 

  10. Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York: Wiley.

    Google Scholar 

  11. Bäck, T., Fogel, D., & Michalewicz, Z. (Eds.). (1997). Handbook of evolutionary computation. Bristol/New York: Institute of Physics Publishing/Oxford University Press.

    MATH  Google Scholar 

  12. Deb, K., Tiwari, R., Dixit, M., & Dutta, J. (2007). Finding trade-off solutions close to KKT points using evolutionary multi-objective optimisation. In Proceedings of the congress on evolutionary computation (CEC-2007) (pp. 2109–2116)

    Google Scholar 

  13. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: MIT Press.

    Google Scholar 

  14. Vose, M. D., Wright, A. H., & Rowe, J. E. (2003). Implicit parallelism. In Proceedings of GECCO 2003 (lecture notes in computer science) (Vol. 2723–2724). Heidelberg: Springer.

    Google Scholar 

  15. Jansen, T., & Wegener, I. (2001). On the utility of populations. In Proceedings of the genetic and evolutionary computation conference (GECCO 2001) (pp. 375–382). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  16. Radcliffe, N. J. (1991). Forma analysis and random respectful recombination. In Proceedings of the fourth international conference on genetic algorithms (pp. 222–229).

    Google Scholar 

  17. Miettinen, K. (1999). Nonlinear multiobjective optimisation. Boston: Kluwer.

    Google Scholar 

  18. Kung, H. T., Luccio, F., & Preparata, F. P. (1975). On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery 22(4):469–476.

    MathSciNet  MATH  Google Scholar 

  19. Ehrgott, M. (2000). Multicriteria optimisation. Berlin: Springer.

    Google Scholar 

  20. Deb, K., & Tiwari, S. (2008). Omni-optimiser: A generic evolutionary algorithm for global optimisation. European Journal of Operations Research 185(3):1062–1087

    Article  MathSciNet  MATH  Google Scholar 

  21. Deb, K., Agrawal, S., Pratapm, A., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2):182–197

    Article  Google Scholar 

  22. Coello, C. A. C., Van Veldhuizen, D. A., & Lamont, G. (2002). Evolutionary algorithms for solving multi-objective problems. Boston, MA: Kluwer.

    MATH  Google Scholar 

  23. Osyczka, A. (2002). Evolutionary algorithms for single and multicriteria design optimisation. Heidelberg: Physica-Verlag.

    Google Scholar 

  24. Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C., & Corne, D. W. (2001). Proceedings of the first evolutionary multi-criterion optimisation (EMO-01) conference (lecture notes in computer science 1993). Heidelberg: Springer.

    Google Scholar 

  25. Fonseca, C., Fleming, P., Zitzler, E., Deb, K., & Thiele, L. (2003). Proceedings of the Second Evolutionary Multi-Criterion Optimization (EMO-03) conference (lecture notes in computer science) (Vol. 2632). Heidelberg: Springer.

    Google Scholar 

  26. Coello, C. A. C., Aguirre, A. H., & Zitzler, E. (Eds.). (2005). Evolutionary multi-criterion optimisation: Third international conference LNCS (Vol. 3410). Berlin, Germany: Springer.

    Google Scholar 

  27. Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., & Murata, T. (Eds.). (2007). Evolutionary multi-criterion optimisation, 4th international conference, EMO 2007, Matsushima, Japan, March 5–8, 2007, Proceedings. Lecture notes in computer science (Vol. 4403). Heidelberg: Springer.

    Google Scholar 

  28. Coverstone-Carroll, V., Hartmann, J. W., & Mason, W. J. (2000). Optimal multi-objective low-thurst spacecraft trajectories. Computer Methods in Applied Mechanics and Engineering 186(2–4):387–402

    Article  MATH  Google Scholar 

  29. Srinivas, N., & Deb, K. (1994). Multi-objective function optimisation using non-dominated sorting genetic algorithms. Evolutionary Computation Journal 2(3):221–248.

    Article  Google Scholar 

  30. Sauer, C. G. (1973). Optimization of multiple target electric propulsion trajectories. In AIAA 11th aerospace science meeting (pp. 73–205).

    Google Scholar 

  31. Knowles, J. D., & Corne, D. W. (2002). On metrics for comparing nondominated sets. In Congress on evolutionary computation (CEC-2002) (pp. 711–716). Piscataway, NJ: IEEE Press.

    Google Scholar 

  32. Hansen, M. P., & Jaskiewicz, A. (1998). Evaluating the quality of approximations to the non-dominated set IMM-REP-1998-7. Lyngby: Institute of Mathematical Modelling Technical University of Denmark.

    Google Scholar 

  33. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Fonseca, V. G. (2003). Performance assessment of multiobjective optimisers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2):117–132

    Article  Google Scholar 

  34. Fonseca, C. M., & Fleming, P. J. (1996). On the performance assessment and comparison of stochastic multiobjective optimisers. In H. M. Voigt, W. Ebeling, I. Rechenberg, & H. P. Schwefel (Eds.), Parallel problem solving from nature (PPSN IV) (pp. 584–593). Berlin: Springer. Also available as Lecture notes in computer science (Vol. 1141).

    Google Scholar 

  35. Fonseca, C. M., da Fonseca, V. G., & Paquete, L. (2005). Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function. In Third international conference on evolutionary multi-criterion optimisation, EMO-2005 (pp. 250–264). Berlin: Springer.

    Google Scholar 

  36. Deb, K., Sundar, J., Uday, N., & Chaudhuri, S. (2006). Reference point based multi-objective optimisation using evolutionary algorithms. International Journal of Computational Intelligence Research 2(6):273–286

    MathSciNet  Google Scholar 

  37. Deb, K., & Kumar, A. (2007). Interactive evolutionary multi-objective optimisation and decision-making using reference direction method. In Proceedings of the genetic and evolutionary computation conference (GECCO-2007) (pp. 781–788). New York: The Association of Computing Machinery (ACM).

    Google Scholar 

  38. Deb, K., & Kumar, A. (2007). Light beam search based multi-objective optimisation using evolutionary algorithms. In Proceedings of the congress on evolutionary computation (CEC-07) (pp. 2125–2132).

    Google Scholar 

  39. Deb, K., Sinha, A., & Kukkonen, S. (2006). Multi-objective test problems, linkages and evolutionary methodologies. In Proceedings of the genetic and evolutionary computation conference (GECCO-2006) (pp. 1141–1148). New York: The Association of Computing Machinery (ACM).

    Google Scholar 

  40. Coello, C. A. C. (2000). Treating objectives as constraints for single objective optimisation. Engineering Optimization 32(3):275–308

    Article  Google Scholar 

  41. Deb, K., & Datta, R. (2010). A fast and accurate solution of constrained optimisation problems using a hybrid bi-objective and penalty function approach. In Proceedings of the IEEE World Congress on Computational Intelligence (WCCI-2010).

    Google Scholar 

  42. Bleuler, S., Brack, M., & Zitzler, E. (2001). Multiobjective genetic programming: Reducing bloat using SPEA2. In Proceedings of the 2001 congress on evolutionary computation (pp. 536–543).

    Google Scholar 

  43. Handl, J., & Knowles, J. D. (2007). An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation 11(1):56–76

    Article  Google Scholar 

  44. Knowles, J. D., Corne, D. W., & Deb, K. (2008). Multiobjective problem solving from nature. Springer natural computing series. Berlin: Springer.

    Google Scholar 

  45. Deb, K., & Srinivasan, A. (2006). Innovization: Innovating design principles through optimisation. In Proceedings of the genetic and evolutionary computation conference (GECCO-2006) (pp. 1629–1636). New York: ACM.

    Google Scholar 

  46. Deb, K., & Sindhya, K. (2008). Deciphering innovative principles for optimal electric brushless D.C. permanent magnet motor design. In Proceedings of the world congress on computational intelligence (WCCI-2008) (pp. 2283–2290). Piscataway, NY: IEEE Press.

    Google Scholar 

  47. Bandaru, S., & Deb, K. (in press). Towards automating the discovery of certain innovative design principles through a clustering based optimisation technique. Engineering Optimization. doi:10.1080/0305215X.2010.528410

  48. Deb, K., & Goel, T. (2001). A hybrid multi-objective evolutionary approach to engineering shape design. In Proceedings of the first international conference on evolutionary multi-criterion optimisation (EMO-01) (pp. 385–399).

    Google Scholar 

  49. Sindhya, K., Deb, K., & Miettinen, K. (2008). A local search based evolutionary multi-objective optimisation technique for fast and accurate convergence. In Proceedings of the parallel problem solving from nature (PPSN-2008). Berlin, Germany: Springer.

    Google Scholar 

  50. Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective evolutionary algorithms. In Proceedings of the second evolutionary multi-criterion optimisation (EMO-03) conference (LNCS) (Vol. 2632, pp. 376–390).

    Google Scholar 

  51. Luque, M., Miettinen, K., Eskelinen, P., & Ruiz, F. (2009). Incorporating preference information in interactive reference point based methods for multiobjective optimisation. Omega 37(2):450–462

    Article  Google Scholar 

  52. Branke, J., & Deb, K. (2004). Integrating user preferences into evolutionary multi-objective optimisation. In Y. Jin (Ed.), Knowledge incorporation in evolutionary computation (pp. 461–477). Heidelberg, Germany: Springer.

    Google Scholar 

  53. Deb, K., Zope, P., & Jain, A. (2003). Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms. In Proceedings of the second evolutionary multi-criterion optimisation (EMO-03) conference (LNCS) (Vol. 2632, pp. 535–549).

    Google Scholar 

  54. Deb, K., & Saxena, D. (2006). Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimisation problems. In Proceedings of the world congress on computational intelligence (WCCI-2006) (pp. 3352–3360).

    Google Scholar 

  55. Saxena, D. K., & Deb, K. (2007) Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimisation problems: Employing correntropy and a novel maximum variance unfolding. In Proceedings of the fourth international conference on evolutionary multi-criterion optimisation (EMO-2007) (pp. 772–787).

    Google Scholar 

  56. Brockhoff, D., & Zitzler, E. (2007) Dimensionality reduction in multiobjective optimisation: The minimum objective subset problem. In K. H. Waldmann, & U. M. Stocker (Eds.), Operations research proceedings 2006 (pp. 423–429). Heidelberg: Springer.

    Google Scholar 

  57. Brockhoff, D., & Zitzler, E. (2007). Offline and online objective reduction in evolutionary multiobjective optimisation based on objective conflicts (p. 269). ETH Zürich: Institut für Technische Informatik und Kommunikationsnetze.

    Google Scholar 

  58. Farina, M., & Amato, P. (2004). A fuzzy definition of optimality for many criteria optimisation problems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 34(3):315–326.

    Article  Google Scholar 

  59. Branke, J. (2001). Evolutionary optimisation in dynamic environments. Heidelberg, Germany: Springer.

    Google Scholar 

  60. Deb, K., Rao, U. B., & Karthik, S. (2007). Dynamic multi-objective optimisation and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling bi-objective optimisation problems. In Proceedings of the fourth international conference on evolutionary multi-criterion optimisation (EMO-2007).

    Google Scholar 

  61. Deb, K., Gupta, S., Daum, D., Branke, J., Mall, A., & Padmanabhan, D. (2009). Reliability-based optimisation using evolutionary algorithms. IEEE Transactions on Evolutionary Computation 13(5):1054–1074

    Article  Google Scholar 

  62. Deb, K., & Gupta, H. (2006). Introducing robustness in multi-objective optimisation. Evolutionary Computation Journal 14(4):463–494

    Article  Google Scholar 

  63. Basseur, M., & Zitzler, E. (2006). Handling uncertainty in indicator-based multiobjective optimisation. International Journal of Computational Intelligence Research 2(3):255–272

    Article  MathSciNet  Google Scholar 

  64. Cruse, T. R. (1997). Reliability-based mechanical design. New York: Marcel Dekker.

    Google Scholar 

  65. Du, X., & Chen, W. (2004). Sequential optimisation and reliability assessment method for efficient probabilistic design. ASME Transactions on Journal of Mechanical Design 126(2):225–233.

    Article  Google Scholar 

  66. El-Beltagy, M. A., Nair, P. B., & Keane, A. J. (1999). Metamodelling techniques for evolutionary optimisation of computationally expensive problems: Promises and limitations. In Proceedings of the genetic and evolutionary computation conference (GECCO-1999) (pp. 196–203). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  67. Giannakoglou, K. C. (2002). Design of optimal aerodynamic shapes using stochastic optimisation methods and computational intelligence. Progress in Aerospace Science 38(1):43–76.

    Article  Google Scholar 

  68. Nain, P. K. S., & Deb, K. (2003). Computationally effective search and optimisation procedure using coarse to fine approximations. In Proceedings of the congress on evolutionary computation (CEC-2003) (pp. 2081–2088).

    Google Scholar 

  69. Deb, K., & Nain, P. K. S. (2007). In An Evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks (pp. 297–322). Berlin, Germany: Springer.

    Google Scholar 

  70. Emmerich, M. T. M, Giannakoglou, K. C., & Naujoks, B. (2006). Single and multiobjective evolutionary optimisation assisted by Gaussian random field metamodels. IEEE Transactions on Evolutionary Computation 10(4):421–439

    Article  Google Scholar 

  71. Emmerich, M., & Naujoks, B. (2004). Metamodel-assisted multiobjective optimisation strategies and their application in airfoil design. In Adaptive computing in design and manufacture VI (pp. 249–260). London, UK: Springer.

    Google Scholar 

Download references

Acknowledgments

The author acknowledges the support and his association with University of Skövde, Sweden and Aalto University School of Economics, Helsinki. This chapter contains some excerpts from previous publications by the same author entitled ‘Introduction to Evolutionary Multi-Objective optimisation’, in J. Branke, K. Deb, K. Miettinen and R. Slowinski (Eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches (LNCS 5252) (pp. 59–96), 2008, Berlin: Springer and ‘Recent Developments in Evolutionary Multi-Objective Optimization’ in M. Ehrgott et al. (Eds.) Trends in Multiple Criteria Decision Analysis (pp. 339-368), 2010, Berlin: Springer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanmoy Deb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Deb, K. (2011). Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction. In: Wang, L., Ng, A., Deb, K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-652-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-652-8_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-617-7

  • Online ISBN: 978-0-85729-652-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics