Abstract
As the name suggests, multi-objective optimisation involves optimising a number of objectives simultaneously. The problem becomes challenging when the objectives are of conflicting characteristics to each other, that is, the optimal solution of an objective function is different from that of the other. In the course of solving such problems, with or without the presence of constraints, these problems give rise to a set of trade-off optimal solutions, popularly known as Pareto-optimal solutions. Because of the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary algorithms using a population approach in its search procedure. Starting with parameterised procedures in early 90s, the so-called evolutionary multi-objective optimisation (EMO) algorithms is now an established field of research and application with many dedicated texts and edited books, commercial softwares and numerous freely downloadable codes, a biannual conference series running successfully since 2001, special sessions and workshops held at all major evolutionary computing conferences, and full-time researchers from universities and industries from all around the globe. In this chapter, we provide a brief introduction to its operating principles and outline the current research and application studies of evolutionary multi-objective optmisation (EMO).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deb, K. (2001). Multi-objective optimisation using evolutionary algorithms. Chichester, UK: Wiley.
Goldberg, D. E. (1989). Genetic algorithms for search, optimisation, and machine learning. Reading, MA: Addison-Wesley.
Deb, K., Reddy, A. R., & Singh, G. (2003). Optimal scheduling of casting sequence using genetic algorithms. Journal of Materials and Manufacturing Processes 18(3):409–432.
Deb, K. (1999). An introduction to genetic algorithms. S \(\bar{a}\) dhan \(\bar{a}\). 24(4):293–315
Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex Systems 9(2):115–148
Deb, K., Anand, A., Joshi, D. (2002). A computationally efficient evolutionary algorithm for real-parameter optimisation. Evolutionary Computation Journal 10(4):371–395
Storn, R., Price, K. (1997). Differential evolution—A fast and efficient heuristic for global optimisation over continuous spaces. Journal of Global Optimization 11:341–359
Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Network 5(1):96–101
Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer.
Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering design. New York: Wiley.
Bäck, T., Fogel, D., & Michalewicz, Z. (Eds.). (1997). Handbook of evolutionary computation. Bristol/New York: Institute of Physics Publishing/Oxford University Press.
Deb, K., Tiwari, R., Dixit, M., & Dutta, J. (2007). Finding trade-off solutions close to KKT points using evolutionary multi-objective optimisation. In Proceedings of the congress on evolutionary computation (CEC-2007) (pp. 2109–2116)
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: MIT Press.
Vose, M. D., Wright, A. H., & Rowe, J. E. (2003). Implicit parallelism. In Proceedings of GECCO 2003 (lecture notes in computer science) (Vol. 2723–2724). Heidelberg: Springer.
Jansen, T., & Wegener, I. (2001). On the utility of populations. In Proceedings of the genetic and evolutionary computation conference (GECCO 2001) (pp. 375–382). San Mateo, CA: Morgan Kaufmann.
Radcliffe, N. J. (1991). Forma analysis and random respectful recombination. In Proceedings of the fourth international conference on genetic algorithms (pp. 222–229).
Miettinen, K. (1999). Nonlinear multiobjective optimisation. Boston: Kluwer.
Kung, H. T., Luccio, F., & Preparata, F. P. (1975). On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery 22(4):469–476.
Ehrgott, M. (2000). Multicriteria optimisation. Berlin: Springer.
Deb, K., & Tiwari, S. (2008). Omni-optimiser: A generic evolutionary algorithm for global optimisation. European Journal of Operations Research 185(3):1062–1087
Deb, K., Agrawal, S., Pratapm, A., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2):182–197
Coello, C. A. C., Van Veldhuizen, D. A., & Lamont, G. (2002). Evolutionary algorithms for solving multi-objective problems. Boston, MA: Kluwer.
Osyczka, A. (2002). Evolutionary algorithms for single and multicriteria design optimisation. Heidelberg: Physica-Verlag.
Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C., & Corne, D. W. (2001). Proceedings of the first evolutionary multi-criterion optimisation (EMO-01) conference (lecture notes in computer science 1993). Heidelberg: Springer.
Fonseca, C., Fleming, P., Zitzler, E., Deb, K., & Thiele, L. (2003). Proceedings of the Second Evolutionary Multi-Criterion Optimization (EMO-03) conference (lecture notes in computer science) (Vol. 2632). Heidelberg: Springer.
Coello, C. A. C., Aguirre, A. H., & Zitzler, E. (Eds.). (2005). Evolutionary multi-criterion optimisation: Third international conference LNCS (Vol. 3410). Berlin, Germany: Springer.
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., & Murata, T. (Eds.). (2007). Evolutionary multi-criterion optimisation, 4th international conference, EMO 2007, Matsushima, Japan, March 5–8, 2007, Proceedings. Lecture notes in computer science (Vol. 4403). Heidelberg: Springer.
Coverstone-Carroll, V., Hartmann, J. W., & Mason, W. J. (2000). Optimal multi-objective low-thurst spacecraft trajectories. Computer Methods in Applied Mechanics and Engineering 186(2–4):387–402
Srinivas, N., & Deb, K. (1994). Multi-objective function optimisation using non-dominated sorting genetic algorithms. Evolutionary Computation Journal 2(3):221–248.
Sauer, C. G. (1973). Optimization of multiple target electric propulsion trajectories. In AIAA 11th aerospace science meeting (pp. 73–205).
Knowles, J. D., & Corne, D. W. (2002). On metrics for comparing nondominated sets. In Congress on evolutionary computation (CEC-2002) (pp. 711–716). Piscataway, NJ: IEEE Press.
Hansen, M. P., & Jaskiewicz, A. (1998). Evaluating the quality of approximations to the non-dominated set IMM-REP-1998-7. Lyngby: Institute of Mathematical Modelling Technical University of Denmark.
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Fonseca, V. G. (2003). Performance assessment of multiobjective optimisers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2):117–132
Fonseca, C. M., & Fleming, P. J. (1996). On the performance assessment and comparison of stochastic multiobjective optimisers. In H. M. Voigt, W. Ebeling, I. Rechenberg, & H. P. Schwefel (Eds.), Parallel problem solving from nature (PPSN IV) (pp. 584–593). Berlin: Springer. Also available as Lecture notes in computer science (Vol. 1141).
Fonseca, C. M., da Fonseca, V. G., & Paquete, L. (2005). Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function. In Third international conference on evolutionary multi-criterion optimisation, EMO-2005 (pp. 250–264). Berlin: Springer.
Deb, K., Sundar, J., Uday, N., & Chaudhuri, S. (2006). Reference point based multi-objective optimisation using evolutionary algorithms. International Journal of Computational Intelligence Research 2(6):273–286
Deb, K., & Kumar, A. (2007). Interactive evolutionary multi-objective optimisation and decision-making using reference direction method. In Proceedings of the genetic and evolutionary computation conference (GECCO-2007) (pp. 781–788). New York: The Association of Computing Machinery (ACM).
Deb, K., & Kumar, A. (2007). Light beam search based multi-objective optimisation using evolutionary algorithms. In Proceedings of the congress on evolutionary computation (CEC-07) (pp. 2125–2132).
Deb, K., Sinha, A., & Kukkonen, S. (2006). Multi-objective test problems, linkages and evolutionary methodologies. In Proceedings of the genetic and evolutionary computation conference (GECCO-2006) (pp. 1141–1148). New York: The Association of Computing Machinery (ACM).
Coello, C. A. C. (2000). Treating objectives as constraints for single objective optimisation. Engineering Optimization 32(3):275–308
Deb, K., & Datta, R. (2010). A fast and accurate solution of constrained optimisation problems using a hybrid bi-objective and penalty function approach. In Proceedings of the IEEE World Congress on Computational Intelligence (WCCI-2010).
Bleuler, S., Brack, M., & Zitzler, E. (2001). Multiobjective genetic programming: Reducing bloat using SPEA2. In Proceedings of the 2001 congress on evolutionary computation (pp. 536–543).
Handl, J., & Knowles, J. D. (2007). An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation 11(1):56–76
Knowles, J. D., Corne, D. W., & Deb, K. (2008). Multiobjective problem solving from nature. Springer natural computing series. Berlin: Springer.
Deb, K., & Srinivasan, A. (2006). Innovization: Innovating design principles through optimisation. In Proceedings of the genetic and evolutionary computation conference (GECCO-2006) (pp. 1629–1636). New York: ACM.
Deb, K., & Sindhya, K. (2008). Deciphering innovative principles for optimal electric brushless D.C. permanent magnet motor design. In Proceedings of the world congress on computational intelligence (WCCI-2008) (pp. 2283–2290). Piscataway, NY: IEEE Press.
Bandaru, S., & Deb, K. (in press). Towards automating the discovery of certain innovative design principles through a clustering based optimisation technique. Engineering Optimization. doi:10.1080/0305215X.2010.528410
Deb, K., & Goel, T. (2001). A hybrid multi-objective evolutionary approach to engineering shape design. In Proceedings of the first international conference on evolutionary multi-criterion optimisation (EMO-01) (pp. 385–399).
Sindhya, K., Deb, K., & Miettinen, K. (2008). A local search based evolutionary multi-objective optimisation technique for fast and accurate convergence. In Proceedings of the parallel problem solving from nature (PPSN-2008). Berlin, Germany: Springer.
Khare, V., Yao, X., & Deb, K. (2003). Performance scaling of multi-objective evolutionary algorithms. In Proceedings of the second evolutionary multi-criterion optimisation (EMO-03) conference (LNCS) (Vol. 2632, pp. 376–390).
Luque, M., Miettinen, K., Eskelinen, P., & Ruiz, F. (2009). Incorporating preference information in interactive reference point based methods for multiobjective optimisation. Omega 37(2):450–462
Branke, J., & Deb, K. (2004). Integrating user preferences into evolutionary multi-objective optimisation. In Y. Jin (Ed.), Knowledge incorporation in evolutionary computation (pp. 461–477). Heidelberg, Germany: Springer.
Deb, K., Zope, P., & Jain, A. (2003). Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms. In Proceedings of the second evolutionary multi-criterion optimisation (EMO-03) conference (LNCS) (Vol. 2632, pp. 535–549).
Deb, K., & Saxena, D. (2006). Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimisation problems. In Proceedings of the world congress on computational intelligence (WCCI-2006) (pp. 3352–3360).
Saxena, D. K., & Deb, K. (2007) Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimisation problems: Employing correntropy and a novel maximum variance unfolding. In Proceedings of the fourth international conference on evolutionary multi-criterion optimisation (EMO-2007) (pp. 772–787).
Brockhoff, D., & Zitzler, E. (2007) Dimensionality reduction in multiobjective optimisation: The minimum objective subset problem. In K. H. Waldmann, & U. M. Stocker (Eds.), Operations research proceedings 2006 (pp. 423–429). Heidelberg: Springer.
Brockhoff, D., & Zitzler, E. (2007). Offline and online objective reduction in evolutionary multiobjective optimisation based on objective conflicts (p. 269). ETH Zürich: Institut für Technische Informatik und Kommunikationsnetze.
Farina, M., & Amato, P. (2004). A fuzzy definition of optimality for many criteria optimisation problems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 34(3):315–326.
Branke, J. (2001). Evolutionary optimisation in dynamic environments. Heidelberg, Germany: Springer.
Deb, K., Rao, U. B., & Karthik, S. (2007). Dynamic multi-objective optimisation and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling bi-objective optimisation problems. In Proceedings of the fourth international conference on evolutionary multi-criterion optimisation (EMO-2007).
Deb, K., Gupta, S., Daum, D., Branke, J., Mall, A., & Padmanabhan, D. (2009). Reliability-based optimisation using evolutionary algorithms. IEEE Transactions on Evolutionary Computation 13(5):1054–1074
Deb, K., & Gupta, H. (2006). Introducing robustness in multi-objective optimisation. Evolutionary Computation Journal 14(4):463–494
Basseur, M., & Zitzler, E. (2006). Handling uncertainty in indicator-based multiobjective optimisation. International Journal of Computational Intelligence Research 2(3):255–272
Cruse, T. R. (1997). Reliability-based mechanical design. New York: Marcel Dekker.
Du, X., & Chen, W. (2004). Sequential optimisation and reliability assessment method for efficient probabilistic design. ASME Transactions on Journal of Mechanical Design 126(2):225–233.
El-Beltagy, M. A., Nair, P. B., & Keane, A. J. (1999). Metamodelling techniques for evolutionary optimisation of computationally expensive problems: Promises and limitations. In Proceedings of the genetic and evolutionary computation conference (GECCO-1999) (pp. 196–203). San Mateo, CA: Morgan Kaufmann.
Giannakoglou, K. C. (2002). Design of optimal aerodynamic shapes using stochastic optimisation methods and computational intelligence. Progress in Aerospace Science 38(1):43–76.
Nain, P. K. S., & Deb, K. (2003). Computationally effective search and optimisation procedure using coarse to fine approximations. In Proceedings of the congress on evolutionary computation (CEC-2003) (pp. 2081–2088).
Deb, K., & Nain, P. K. S. (2007). In An Evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks (pp. 297–322). Berlin, Germany: Springer.
Emmerich, M. T. M, Giannakoglou, K. C., & Naujoks, B. (2006). Single and multiobjective evolutionary optimisation assisted by Gaussian random field metamodels. IEEE Transactions on Evolutionary Computation 10(4):421–439
Emmerich, M., & Naujoks, B. (2004). Metamodel-assisted multiobjective optimisation strategies and their application in airfoil design. In Adaptive computing in design and manufacture VI (pp. 249–260). London, UK: Springer.
Acknowledgments
The author acknowledges the support and his association with University of Skövde, Sweden and Aalto University School of Economics, Helsinki. This chapter contains some excerpts from previous publications by the same author entitled ‘Introduction to Evolutionary Multi-Objective optimisation’, in J. Branke, K. Deb, K. Miettinen and R. Slowinski (Eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches (LNCS 5252) (pp. 59–96), 2008, Berlin: Springer and ‘Recent Developments in Evolutionary Multi-Objective Optimization’ in M. Ehrgott et al. (Eds.) Trends in Multiple Criteria Decision Analysis (pp. 339-368), 2010, Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag London Limited
About this chapter
Cite this chapter
Deb, K. (2011). Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction. In: Wang, L., Ng, A., Deb, K. (eds) Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-652-8_1
Download citation
DOI: https://doi.org/10.1007/978-0-85729-652-8_1
Published:
Publisher Name: Springer, London
Print ISBN: 978-0-85729-617-7
Online ISBN: 978-0-85729-652-8
eBook Packages: EngineeringEngineering (R0)