Nothing Special   »   [go: up one dir, main page]

Skip to main content

De Novo Molecular Generation with Stacked Adversarial Model

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Abstract

Generating novel drug molecules with desired biological properties is a time consuming and complex task. Conditional generative adversarial models have recently been proposed as promising approaches for de novo drug design. In this paper, we propose a new generative model which extends an existing adversarial autoencoder (AAE) based model by stacking two models together. Our stacked approach generates more valid molecules, as well as molecules that are more similar to known drugs. We break down this challenging task into two sub-problems. A first stage model to learn primitive features from the molecules and gene expression data. A second stage model then takes these features to learn properties of the molecules and refine more valid molecules. Experiments and comparison to baseline methods on the LINCS L1000 dataset demonstrate that our proposed model has promising performance for molecular generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belghazi, M.I., et al.: Mine: mutual information neural estimation (2018)

    Google Scholar 

  2. De Wolf, H., et al.: High-throughput gene expression profiles to define drug similarity and predict compound activity. ASSAY Drug Dev. Technol. 16(3), 162–176 (2018). https://doi.org/10.1089/adt.2018.845

  3. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  4. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018). https://doi.org/10.1021/acscentsci.7b00572

    Article  Google Scholar 

  5. Hendrickson, J.B.: Concepts and applications of molecular similarity. Science 252, 1189–1190 (1991)

    Google Scholar 

  6. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)

    Google Scholar 

  7. Li, Y., Zhang, L., Liu, Z.: Multi-objective de novo drug design with conditional graph generative model. J. Cheminform. 10(1), 1–24 (2018). https://doi.org/10.1186/s13321-018-0287-6

    Article  Google Scholar 

  8. Lim, J., Ryu, S., Kim, J., Kim., W.Y.: Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminform. 10 (2018). https://doi.org/10.1186/s13321-018-0286-7

  9. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46(1), 3–26 (2001). http://www.sciencedirect.com/science/article/pii/S0169409X00001290

  10. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015)

    Google Scholar 

  11. Mamoshina, P., Vieira, A., Putin, E., Zhavoronkov, A.: Applications of deep learning in biomedicine. Mol. Pharm. 13(5), 1445–1454 (2016). https://doi.org/10.1021/acs.molpharmaceut.5b00982. pMID: 27007977

    Article  Google Scholar 

  12. Masuda, T., Ragoza, M., Koes, D.R.: Generating 3D molecular structures conditional on a receptor binding site with deep generative models (2020)

    Google Scholar 

  13. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014)

    Google Scholar 

  14. Méndez-Lucio, O., Baillif, B., Clevert, D., Rouquié, D., Wichard, J.: De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat. Commun. 11 (2020). https://doi.org/10.1038/s41467-019-13807-w

  15. Prykhodko, O., et al.: A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminform. 11(1), 1–13 (2019). https://doi.org/10.1186/s13321-019-0397-9

    Article  Google Scholar 

  16. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Modeling 50(5), 742–754 (2010). https://doi.org/10.1021/ci100050t. pMID: 20426451

  17. Shayakhmetov, R., et al.: Molecular generation for desired transcriptome changes with adversarial autoencoders. Frontiers Pharmacol. 11, 269 (2020). https://www.frontiersin.org/article/10.3389/fphar.2020.00269

  18. Subramanian, A., et al.: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. bioRxiv (2017). https://doi.org/10.1101/136168

  19. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation learning: objectives and optimization (2016)

    Google Scholar 

  20. Weininger, D.: Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988). https://pubs.acs.org/doi/abs/10.1021/ci00057a005

  21. Wermuth, C.G., Ganellin, C.R., Lindberg, P., Mitscher, L.A.: Glossary of terms used in medicinal chemistry (IUPAC recommendations 1998). Pure Appl. Chem. 70(5), 1129–1143 (1998). https://doi.org/10.1351/pac199870051129

  22. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5908–5916 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Bailey, J. (2022). De Novo Molecular Generation with Stacked Adversarial Model. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics