Abstract
Generating novel drug molecules with desired biological properties is a time consuming and complex task. Conditional generative adversarial models have recently been proposed as promising approaches for de novo drug design. In this paper, we propose a new generative model which extends an existing adversarial autoencoder (AAE) based model by stacking two models together. Our stacked approach generates more valid molecules, as well as molecules that are more similar to known drugs. We break down this challenging task into two sub-problems. A first stage model to learn primitive features from the molecules and gene expression data. A second stage model then takes these features to learn properties of the molecules and refine more valid molecules. Experiments and comparison to baseline methods on the LINCS L1000 dataset demonstrate that our proposed model has promising performance for molecular generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belghazi, M.I., et al.: Mine: mutual information neural estimation (2018)
De Wolf, H., et al.: High-throughput gene expression profiles to define drug similarity and predict compound activity. ASSAY Drug Dev. Technol. 16(3), 162–176 (2018). https://doi.org/10.1089/adt.2018.845
Goodfellow, I.J., et al.: Generative adversarial networks (2014)
Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018). https://doi.org/10.1021/acscentsci.7b00572
Hendrickson, J.B.: Concepts and applications of molecular similarity. Science 252, 1189–1190 (1991)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)
Li, Y., Zhang, L., Liu, Z.: Multi-objective de novo drug design with conditional graph generative model. J. Cheminform. 10(1), 1–24 (2018). https://doi.org/10.1186/s13321-018-0287-6
Lim, J., Ryu, S., Kim, J., Kim., W.Y.: Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminform. 10 (2018). https://doi.org/10.1186/s13321-018-0286-7
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46(1), 3–26 (2001). http://www.sciencedirect.com/science/article/pii/S0169409X00001290
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015)
Mamoshina, P., Vieira, A., Putin, E., Zhavoronkov, A.: Applications of deep learning in biomedicine. Mol. Pharm. 13(5), 1445–1454 (2016). https://doi.org/10.1021/acs.molpharmaceut.5b00982. pMID: 27007977
Masuda, T., Ragoza, M., Koes, D.R.: Generating 3D molecular structures conditional on a receptor binding site with deep generative models (2020)
Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014)
Méndez-Lucio, O., Baillif, B., Clevert, D., Rouquié, D., Wichard, J.: De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat. Commun. 11 (2020). https://doi.org/10.1038/s41467-019-13807-w
Prykhodko, O., et al.: A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminform. 11(1), 1–13 (2019). https://doi.org/10.1186/s13321-019-0397-9
Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Modeling 50(5), 742–754 (2010). https://doi.org/10.1021/ci100050t. pMID: 20426451
Shayakhmetov, R., et al.: Molecular generation for desired transcriptome changes with adversarial autoencoders. Frontiers Pharmacol. 11, 269 (2020). https://www.frontiersin.org/article/10.3389/fphar.2020.00269
Subramanian, A., et al.: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. bioRxiv (2017). https://doi.org/10.1101/136168
Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation learning: objectives and optimization (2016)
Weininger, D.: Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988). https://pubs.acs.org/doi/abs/10.1021/ci00057a005
Wermuth, C.G., Ganellin, C.R., Lindberg, P., Mitscher, L.A.: Glossary of terms used in medicinal chemistry (IUPAC recommendations 1998). Pure Appl. Chem. 70(5), 1129–1143 (1998). https://doi.org/10.1351/pac199870051129
Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5908–5916 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y., Bailey, J. (2022). De Novo Molecular Generation with Stacked Adversarial Model. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-97546-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97545-6
Online ISBN: 978-3-030-97546-3
eBook Packages: Computer ScienceComputer Science (R0)