Nothing Special   »   [go: up one dir, main page]

Skip to main content

V-EPTD: A Verifiable and Efficient Scheme for Privacy-Preserving Truth Discovery

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Abstract

Privacy-preserving truth discovery has been researched from many perspectives in the past few years. However, the complex iterative computation and multi-user feature makes it challenging to design a verifiable algorithm for it. In this paper, we propose a novel scheme named V-EPTD that not only protects the privacy information but also verifies the computing in truth discovery. The proposed technique adopts a threshold paillier cryptosystem to solve the multi-user problem so that all parties encrypt the data with the same public key while being unable to decrypt the ciphertext if there are not enough parties. V-EPTD also transforms complex iterative computation into polynomials, uses linear homomorphic hash, and commitment complete verification. The experimentation and analysis show that V-EPTD has good performances for users, verifiers, and the server, both in communication overhead and computation overhead.

Supported by the grant from National Natural Science Foundation of China (No. 61972037).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matrix mathematics: theory, facts, and formulas with application to linear systems theory, pp. xlii+1139. Princeton University Press (2009)

    Google Scholar 

  2. Ajarn, J.J.: Permutations and Combinations. Combinatorial Theory, 2nd edn. (2009)

    Google Scholar 

  3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_22

    Chapter  Google Scholar 

  4. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_9

    Chapter  MATH  Google Scholar 

  5. Erfan, F., Mala, H.: Secure and efficient publicly verifiable outsourcing of matrix multiplication in online mode. Cluster Comput. 23(4), 2835–2845 (2020). https://doi.org/10.1007/s10586-020-03049-7

    Article  Google Scholar 

  6. Gajera, H., Das, M.L.: Privc: privacy preserving verifiable computation. In: 2020 International Conference on COMmunication Systems & NETworkS, COMSNETS 2020, Bengaluru, India, 7–11 January 2020, pp. 298–305. IEEE (2020). https://doi.org/10.1109/COMSNETS48256.2020.9027488

  7. Guo, X., et al.: VeriFL: communication-efficient and fast verifiable aggregation for federated learning. IEEE Trans. Inf. Forensics Secur. 16, 1736–1751 (2021). https://doi.org/10.1109/TIFS.2020.3043139

    Article  Google Scholar 

  8. Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., Han, J.: Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation. In: Dyreson, C.E., Li, F., Özsu, M.T. (eds.) International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, 22–27 June 2014, pp. 1187–1198. ACM (2014). https://doi.org/10.1145/2588555.2610509

  9. Miao, C., et al.: Cloud-enabled privacy-preserving truth discovery in crowd sensing systems. In: Song, J., Abdelzaher, T.F., Mascolo, C. (eds.) Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys 2015, Seoul, South Korea, 1–4 November 2015, pp. 183–196. ACM (2015). https://doi.org/10.1145/2809695.2809719

  10. Miao, C., et al.: Privacy-preserving truth discovery in crowd sensing systems. ACM Trans. Sens. Netw. 15(1), 9:1–9:32 (2019). https://doi.org/10.1145/3277505

  11. Miao, C., Su, L., Jiang, W., Li, Y., Tian, M.: A lightweight privacy-preserving truth discovery framework for mobile crowd sensing systems. In: 2017 IEEE Conference on Computer Communications, INFOCOM 2017, Atlanta, GA, USA, 1–4 May 2017, pp. 1–9. IEEE (2017). https://doi.org/10.1109/INFOCOM.2017.8057114

  12. Wang, X.A., Choo, K.R., Weng, J., Ma, J.: Comments on “publicly verifiable computation of polynomials over outsourced data with multiple sources’’. IEEE Trans. Inf. Forensics Secur. 15, 1586–1588 (2020). https://doi.org/10.1109/TIFS.2019.2936971

    Article  Google Scholar 

  13. Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: VerifyNet: secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur. 15, 911–926 (2020). https://doi.org/10.1109/TIFS.2019.2929409

    Article  Google Scholar 

  14. Xu, G., Li, H., Lu, R.: Practical and privacy-aware truth discovery in mobile crowd sensing systems. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 2312–2314. ACM (2018). https://doi.org/10.1145/3243734.3278529

  15. Xu, G., et al.: Catch you if you deceive me: verifiable and privacy-aware truth discovery in crowdsensing systems. In: Sun, H., Shieh, S., Gu, G., Ateniese, G. (eds.) ASIA CCS’20: The 15th ACM Asia Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020, pp. 178–192. ACM (2020). https://doi.org/10.1145/3320269.3384720

  16. Zhang, C., Xu, C., Zhu, L., Li, Y., Zhang, C., Wu, H.: An efficient and privacy-preserving truth discovery scheme in crowdsensing applications. Comput. Secur. 97, 101848 (2020). https://doi.org/10.1016/j.cose.2020.101848

    Article  Google Scholar 

  17. Zhang, C., Zhu, L., Xu, C., Liu, X., Sharif, K.: Reliable and privacy-preserving truth discovery for mobile crowdsensing systems. IEEE Trans. Dependable Secur. Comput. 18(3), 1245–1260 (2021). https://doi.org/10.1109/TDSC.2019.2919517

    Article  Google Scholar 

  18. Zhang, C., Zhu, L., Xu, C., Ni, J., Huang, C., Shen, X.S.: Efficient and privacy-preserving non-interactive truth discovery for mobile crowdsensing. In: IEEE Global Communications Conference, GLOBECOM 2020, Virtual Event, Taiwan, 7–11 December 2020, pp. 1–6. IEEE (2020). https://doi.org/10.1109/GLOBECOM42002.2020.9322483

  19. Zhang, L.F., Safavi-Naini, R.: Protecting data privacy in publicly verifiable delegation of matrix and polynomial functions. Des. Codes Cryptogr. 88(4), 677–709 (2019). https://doi.org/10.1007/s10623-019-00704-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, C., Rao, H., Zhu, L., Zhang, C., Sharif, K. (2022). V-EPTD: A Verifiable and Efficient Scheme for Privacy-Preserving Truth Discovery. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics