Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimized Quasi-Monte Carlo Methods Based on Van der Corput Sequence for Sensitivity Analysis in Air Pollution Modelling

  • Chapter
  • First Online:
Recent Advances in Computational Optimization (WCO 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 986))

Included in the following conference series:

Abstract

An optimization version of the van der Corput sequence has been used in our sensitivity studies of the model output results for some air pollutants with respect to the emission levels and some chemical reactions rates. Sensitivity analysis of model outputs to variation or natural uncertainties of model inputs is very significant for improving the reliability of these models. Clearly, the progress in the area of air pollution modeling, is closely connected with the progress in reliable algorithms for multidimensional integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonov, I., Saleev, V.: An economic method of computing \(LP_{\tau }\)-sequences. USSR Comput. Math. Phy. 19, 252–256 (1979)

    Article  Google Scholar 

  2. Bahvalov, N.: On the approximate computation of multiple integrals. Vestn. Mosc. State Univ. 4, 3–18 (1959)

    MathSciNet  Google Scholar 

  3. Bakhvalov, N.: On the approximate calculation of multiple integrals. J. Complex. 31(4), 502–516 (2015)

    Article  Google Scholar 

  4. Bratley, P., Fox, B.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14(1), 88–100 (1988)

    Article  MathSciNet  Google Scholar 

  5. Cukier, R., Fortuin, C., Shuler, K., Petschek, A., Schaibly, J.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I: theory. J. Chem. Phys. 59, 3873–3878 (1973)

    Article  Google Scholar 

  6. Dimitriu, G.: Global sensitivity analysis for a chronic myelogenous leukemia model. In: Proceedings of the 9th International Conference NMA’2018, Borovets, Bulgaria, 20–24 Aug 2018, LNCS 11189. Springer (2019). https://doi.org/10.1007/978-3-030-10692-8_42

  7. Dimov, I.T., Atanassov, E.: Exact error estimates and optimal randomized algorithms for integration. LNCS 4310, 131–139 (2007)

    MATH  Google Scholar 

  8. Dimov, I.T., Farago, I., Havasi, A., Zlatev, Z.: Operator splitting and commutativity analysis in the Danish Eulerian model. Math. Comp. Sim. 67, 217–233 (2004)

    Article  MathSciNet  Google Scholar 

  9. Dimov, I., Georgieva, R.: Monte Carlo algorithms for evaluating Sobol’ sensitivity indices. Math. Comput. Simul. 81(3), 506–514 (2010). ISSN 0378-4754, https://doi.org/10.1016/j.matcom.2009.09.005

  10. Dimov, I.T., Georgieva, R., Ostromsky, T., Zlatev, Z.: Variance-based sensitivity analysis of the unified Danish Eulerian model according to variations of chemical rates. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) Proceedings of the NAA 2012, LNCS 8236, pp. 247–254. Springer (2013)

    Google Scholar 

  11. Dimov, I.T., Georgieva, R., Ostromsky, T., Zlatev, Z.: Sensitivity studies of pollutant concentrations calculated by UNI-DEM with respect to the input emissions. Cent. Eur. J. Math. 11(8), 1531–1545 (2013). (Numerical Methods for Large Scale Scientific Computing)

    Google Scholar 

  12. Dimov, I.T., Ostromsky, T., Zlatev, Z.: Challenges in using splitting techniques for large-scale environmental modeling. In: Farago, I. (ed.) Advances in Air Pollution Modeling for Environmental Security, NATO Science Series, pp. 115–132. Springer (2005)

    Google Scholar 

  13. Doukovska, L.: Constant false alarm rate detectors in intensive noise environment conditions. Cybern. Inf. Technol. 10(3), 31–48 (2010)

    Google Scholar 

  14. Georgiev, I., Kandilarov, J.: An immersed interface FEM for elliptic problems with local own sources. In: AIP Conference Proceedings, vol. 1186, no. 1, pp. 335–342. American Institute of Physics (2009)

    Google Scholar 

  15. Georgiev, I.R., Zheleva, I., Filipova, M.: Numerical study of the influence of two-burner heating upon the heat transfer during pyrolysis process used for end-of-life tires (EOLT) treatment. In: AIP Conference Proceedings, vol. 2164

    Google Scholar 

  16. Gocheva-Ilieva, Snezhana G., Ivanov, Atanas V., Livieris, Ioannis E.: High performance machine learning models of large scale air pollution data in urban area. Cybern. Inf. Technol. 20(6), 49–60 (2020)

    Google Scholar 

  17. Gocheva-Ilieva, S.G., Ivanov, A.V., Voynikova, D.S., et al.: Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch. Environ. Res. Risk Assess. 28, 1045–1060 (2014)

    Article  Google Scholar 

  18. Gocheva-Ilieva, S.G., Voynikova, D.S., Stoimenova, M.P., Ivanov, A.V., Iliev, I.P.: Regression trees modeling of time series for air pollution analysis and forecasting. Neural Comput. Appl. 31(12), 9023–9039 (2019)

    Article  Google Scholar 

  19. Hamdad, H., Pézerat, C., Gauvreau, B., Locqueteau, C., Denoual, Y.: Sensitivity analysis and propagation of uncertainty for the simulation of vehicle pass-by noise. Appl. Acoust. 149, 85–98 (2019). Elsevier. https://doi.org/10.1016/j.apacoust.2019.01.026

  20. Hesstvedt, E., Hov, Ø., Isaksen, I.A.: Quasi-steady-state approximations in air pollution modeling: comparison of two numerical schemes for oxidant prediction. Int. J. Chem. Kinet. 10, 971–994 (1978)

    Article  Google Scholar 

  21. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

    Article  Google Scholar 

  22. Karaivanova, A.: Stochastic numerical methods and simulations (2012)

    Google Scholar 

  23. Kuipers, L., Niederreiter, H.: [1974], Uniform distribution of sequences, p. 129,158. Dover Publications (2005). ISBN 0-486-45019-8, Zbl 0281.10001

    Google Scholar 

  24. Marchuk, G.I.: Mathematical modeling for the problem of the environment. In: Studies in Mathematics and Applications, North-Holland, Amsterdam, vol. 16 (1985)

    Google Scholar 

  25. Ostromsky, T., Dimov, I.T., Georgieva, R., Zlatev, Z.: Air pollution modelling, sensitivity analysis and parallel implementation. Int. J. Environ. Pollut. 46(1/2), 83–96 (2011)

    Google Scholar 

  26. Ostromsky, T., Dimov, I.T., Georgieva, R., Zlatev, Z.: Parallel computation of sensitivity analysis data for the Danish Eulerian model, In: Proceedings of the 8th International Conference LSSC’11, 6–10 Oct 2011 Sozopol Bulgaria, LNCS, 7116, pp. 301–309. Springer (2012)

    Google Scholar 

  27. Ostromsky, T., Dimov, I.T., Marinov, P., Georgieva, R., Zlatev, Z.: Advanced sensitivity analysis of the Danish Eulerian model in parallel and grid environment. In: Proceedings of the Third International Conference AMiTaNS’11, 20–25 June 2011 Albena Bulgaria, AIP Conference Proceedings, vol. 1404, pp. 225–232 (2011)

    Google Scholar 

  28. Poryazov, S.: A suitable unit of sensitivity in telecommunications. TELECOM, 13–14.10.2011. Sofia. ISSN 1314–2690, 165–172 (2011)

    Google Scholar 

  29. Saltelli, A., Chan, K., Scott, M.: Sensitivity Analysis. Probability and Statistics Series, Wiley and Sons publishers (2000)

    Google Scholar 

  30. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer, Wiley (2008)

    Google Scholar 

  31. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. Halsted Press, New York (2004)

    MATH  Google Scholar 

  32. Sloan, I.H., Kachoyan, P.J.: SIAM J. Numer. Anal. 24, 116–128 (1987)

    Article  MathSciNet  Google Scholar 

  33. I.H. Sloan and S. Joe, Lattice methods for multiple Integration, (Oxford University Press 1994)

    Google Scholar 

  34. Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Matem. Model. 2(1), 112–118 (1990)

    MATH  Google Scholar 

  36. Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  37. Sobol’, I.M.: Theorem and examples on high dimensional model representation. Reliab. Eng. Syst. Saf. 79, 187–193 (2003)

    Article  Google Scholar 

  38. Sobol, I.M., Myshetskaya, E.: Monte Carlo estimators for small sensitivity indices. Monte Carlo Methods Appl. 13(5–6), 455–465 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S., Mauntz, W.: Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab. Eng. Syst. Saf. 92, 957–960 (2007)

    Article  Google Scholar 

  40. Wang, Y., Hickernell, F.J.: An historical overview of lattice point sets (2002)

    Google Scholar 

  41. van der Corput, J.G.: Verteilungsfunktionen (Erste Mitteilung) (PDF). In: Proceedings of the Koninklijke Akademie van Wetenschappen te Amsterdam (in German), vol. 38, pp. 813–821 (1935). Zbl 0012.34705

    Google Scholar 

  42. Veleva, E., Georgiev, I.R.: Seasonality of the levels of particulate matter PM10 air pollutant in the city of Ruse, Bulgaria. In: AIP Conference Proceedings, vol. 2302, no. 1, p. 030006. AIP Publishing LLC (2020)

    Google Scholar 

  43. Wang, Y., Hickernell, F.J.: An historical overview of lattice point sets.. In: Monte Carlo and Quasi-Monte Carlo Methods 2000, Proceedings of a Conference held at Hong Kong Baptist University, China (2000)

    Google Scholar 

  44. Zheleva, I., Georgiev, I., Filipova, M., Menseidov, D.: Mathematical modeling of the heat transfer during pyrolysis process used for end-of-life tires treatment. In: AIP Conference Proceedings, vol. 1895, no. 1, p. 030008. AIP Publishing LLC (2017)

    Google Scholar 

  45. Zlatev, Z.: Computer Treatment of Large Air Pollution Models. KLUWER Academic Publishers, Dorsrecht-Boston-London (1995)

    Book  Google Scholar 

  46. Zlatev, Z., Dimov, I.T.: Computational and Numerical Challenges in Environmental Modelling. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  47. Zlatev, Z., Dimov, I., Georgiev, K.: Three-dimensional version of the Danish Eulerian model. Zeitschrift für Angewandte Mathematik und Mechanik 76(S4), 473–476 (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

Venelin Todorov is supported by the by the Bulgarian National Science Fund under Project DN 12/5-2017 “Efficient Stochastic Methods and Algorithms for Large-Scale Problems” and by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICT in SES)”, contract No DO1-205/23.11.2018, financed by the Ministry of Education and Science in Bulgaria. The work is also supported by Young Scientists Project KP-06-M32/2—17.12.2019 “Advanced Stochastic and Deterministic Approaches for Large-Scale Problems of Computational Mathematics” and by Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications” funded by National Science Fund—Bulgaria. Barcelona Supercompputing Centre (BSC) is kindly acknowledged too for granting us access and computer time on their most powerful supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venelin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Todorov, V., Dimov, I., Ostromsky, T., Zlatev, Z., Georgieva, R., Poryazov, S. (2022). Optimized Quasi-Monte Carlo Methods Based on Van der Corput Sequence for Sensitivity Analysis in Air Pollution Modelling. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. WCO 2020. Studies in Computational Intelligence, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-030-82397-9_20

Download citation

Publish with us

Policies and ethics