Abstract
Sensitivity analysis of model outputs to variation or natural uncertainties of model inputs is very significant for improving the reliability of these models. Several efficient quazi-Monte Carlo algorithms – van der Corput sequence and Fibonacci based lattice rule have been used in our sensitivity studies of the model output results for some air pollutants with respect to the emission levels and some chemical reactions rates. The algorithms have been successfully applied to compute global Sobol sensitivity measures corresponding to the influence of several input parameters (six chemical reactions rates and four different groups of pollutants) on the concentrations of important air pollutants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahvalov, N.: On the approximate computation of multiple integrals. Vestnik Moscow State Univ. Ser. Mat., Mech. 4, 3-18 (1959)
Bakhvalov, N.: J. Complexity 31(4), 502–516 (2015)
Dimov, I.T., Atanassov, E.: Exact error estimates and optimal randomized algorithms for integration. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 131–139. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70942-8_15
Dimov, I., Georgieva, R.: Monte Carlo algorithms for evaluating Sobol’ sensitivity indices. Math. Comput. Simul. 81(3), 506-514 (2010). ISSN 0378-4754. https://doi.org/10.1016/j.matcom.2009.09.005
Dimov, I., Georgieva, R., Ostromsky, T., Zlatev, Z.: Variance-based sensitivity analysis of the unified Danish Eulerian model according to variations of chemical rates. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 247–254. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_26
Dimov, I., Georgieva, R., Ostromsky, T., Zlatev, Z.: Sensitivity studies of pollutant concentrations calculated by UNI-DEM with respect to the input emissions. Central Eur. J. Math. Numer. Methods Large Scale Sci. Comput. 11(8) 1531–1545 (2013)
Doukovska, L.: Constant false alarm rate detectors in intensive noise environment conditions. Cybern. Inf. Technol. 10(3), 31–48 (2010)
Fidanova, S.: Convergence proof for a Monte Carlo method for combinatorial optimization problems. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 523–530. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25944-2_68
Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)
Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Cham (1981)
Karaivanova, A.: Stochastic numerical methods and simulations (2012)
Karaivanova, A., Atanassov, E., Ivanovska, S., Gurov, T., Durchova, M.: Parallel Quasi-Monte Carlo Integration with Application in Environmental Studies, SEE-GRID-SCIUserForum, pp. 67-71 Istanbul, Turkey (2009)
Korobov, N.M.: Soviet Math. Doklady 1, 696–700 (1960)
Korobov, N.M.: Number-Theoretical Methods in Approximate Analysis. Fizmatgiz, Moscow (1963)
Kuo, F.Y., Nuyens, D.: Found. Comput. Math. 16(6), 1631–1696 (2016)
Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S.: Structural Instability of Gold and Bimetallic Nanowires Using Monte Carlo Simulation. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 838, pp. 133–145. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22723-4_9
Niederreiter, H., Talay, D.: Monte Carlo and Quasi-Monte Carlo Methods. Springer, Cham (2002)
Nuyens, D.: The magic point shop of QMC point generators and generating vectors. https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/
Paskov, S.H.: Computing high dimensional integrals with applications to finance. Technical report CUCS-023-94, Columbia University (1994)
Poryazov, S.: A suitable unit of sensitivity in telecommunications. In: TELECOM 13–14 Oct 2011, Sofia, pp. 165–172. ISSN: 1314–2690 (2011)
Poryazov, S., Saranova, E., Ganchev, I.: Conceptual and analytical models for predicting the quality of service of overall telecommunication systems. In: Ganchev, I., van der Mei, R.D., van den Berg, H. (eds.) Autonomous Control for a Reliable Internet of Services. LNCS, vol. 10768, pp. 151–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90415-3_7
Sloan, I.H., Kachoyan, P.J.: SIAM J. Numer. Anal. 24, 116–128 (1987)
Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)
Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S., Mauntz, W.: Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab. Eng. Syst. Saf. 92, 957–960 (2007)
Wang, Y., Hickernell, F.J.: An historical overview of lattice point sets. In: Monte Carlo and Quasi-Monte Carlo Methods 2000, Proceedings of a Conference held at Hong Kong Baptist University, China (2000)
Zlatev, Z.: Computer Treatment of Large Air Pollution Models. KLUWER Academic Publishers, Dorsrecht-Boston-London (1995)
Zlatev, Z., Dimov, I.T.: Computational and Numerical Challenges in Environmental Modelling. Elsevier, Amsterdam (2006)
Fast component-by-component constructions. https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/
Acknowledgement
Venelin Todorov is supported by the Bulgarian National Science Fund under Projects KP-06-N52/5 “Efficient methods for modeling, optimization and decision making” and KP-06-N62/6 “Machine learning through physics-informed neural networks”. The work is also supported by the Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Todorov, V., Dimov, I., Ostromsky, T., Apostolov, S., Dimitrov, Y., Zlatev, Z. (2023). Quasi-Monte Carlo Methods Based on Low Discrepancy Sequences for Sensitivity Analysis in Air Pollution Modelling. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2019. Studies in Computational Intelligence, vol 1111. Springer, Cham. https://doi.org/10.1007/978-3-031-42010-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-42010-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-42009-2
Online ISBN: 978-3-031-42010-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)