Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quasi-Monte Carlo Methods Based on Low Discrepancy Sequences for Sensitivity Analysis in Air Pollution Modelling

  • Conference paper
  • First Online:
Advanced Computing in Industrial Mathematics (BGSIAM 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1111))

Included in the following conference series:

  • 94 Accesses

Abstract

Sensitivity analysis of model outputs to variation or natural uncertainties of model inputs is very significant for improving the reliability of these models. Several efficient quazi-Monte Carlo algorithms – van der Corput sequence and Fibonacci based lattice rule have been used in our sensitivity studies of the model output results for some air pollutants with respect to the emission levels and some chemical reactions rates. The algorithms have been successfully applied to compute global Sobol sensitivity measures corresponding to the influence of several input parameters (six chemical reactions rates and four different groups of pollutants) on the concentrations of important air pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahvalov, N.: On the approximate computation of multiple integrals. Vestnik Moscow State Univ. Ser. Mat., Mech. 4, 3-18 (1959)

    Google Scholar 

  2. Bakhvalov, N.: J. Complexity 31(4), 502–516 (2015)

    Google Scholar 

  3. Dimov, I.T., Atanassov, E.: Exact error estimates and optimal randomized algorithms for integration. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 131–139. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70942-8_15

    Chapter  MATH  Google Scholar 

  4. Dimov, I., Georgieva, R.: Monte Carlo algorithms for evaluating Sobol’ sensitivity indices. Math. Comput. Simul. 81(3), 506-514 (2010). ISSN 0378-4754. https://doi.org/10.1016/j.matcom.2009.09.005

  5. Dimov, I., Georgieva, R., Ostromsky, T., Zlatev, Z.: Variance-based sensitivity analysis of the unified Danish Eulerian model according to variations of chemical rates. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 247–254. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_26

    Chapter  MATH  Google Scholar 

  6. Dimov, I., Georgieva, R., Ostromsky, T., Zlatev, Z.: Sensitivity studies of pollutant concentrations calculated by UNI-DEM with respect to the input emissions. Central Eur. J. Math. Numer. Methods Large Scale Sci. Comput. 11(8) 1531–1545 (2013)

    Google Scholar 

  7. Doukovska, L.: Constant false alarm rate detectors in intensive noise environment conditions. Cybern. Inf. Technol. 10(3), 31–48 (2010)

    Google Scholar 

  8. Fidanova, S.: Convergence proof for a Monte Carlo method for combinatorial optimization problems. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 523–530. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25944-2_68

    Chapter  Google Scholar 

  9. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

    Article  Google Scholar 

  10. Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Cham (1981)

    MATH  Google Scholar 

  11. Karaivanova, A.: Stochastic numerical methods and simulations (2012)

    Google Scholar 

  12. Karaivanova, A., Atanassov, E., Ivanovska, S., Gurov, T., Durchova, M.: Parallel Quasi-Monte Carlo Integration with Application in Environmental Studies, SEE-GRID-SCIUserForum, pp. 67-71 Istanbul, Turkey (2009)

    Google Scholar 

  13. Korobov, N.M.: Soviet Math. Doklady 1, 696–700 (1960)

    Google Scholar 

  14. Korobov, N.M.: Number-Theoretical Methods in Approximate Analysis. Fizmatgiz, Moscow (1963)

    Google Scholar 

  15. Kuo, F.Y., Nuyens, D.: Found. Comput. Math. 16(6), 1631–1696 (2016)

    Google Scholar 

  16. Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S.: Structural Instability of Gold and Bimetallic Nanowires Using Monte Carlo Simulation. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 838, pp. 133–145. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22723-4_9

    Chapter  MATH  Google Scholar 

  17. Niederreiter, H., Talay, D.: Monte Carlo and Quasi-Monte Carlo Methods. Springer, Cham (2002)

    MATH  Google Scholar 

  18. Nuyens, D.: The magic point shop of QMC point generators and generating vectors. https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/

  19. Paskov, S.H.: Computing high dimensional integrals with applications to finance. Technical report CUCS-023-94, Columbia University (1994)

    Google Scholar 

  20. Poryazov, S.: A suitable unit of sensitivity in telecommunications. In: TELECOM 13–14 Oct 2011, Sofia, pp. 165–172. ISSN: 1314–2690 (2011)

    Google Scholar 

  21. Poryazov, S., Saranova, E., Ganchev, I.: Conceptual and analytical models for predicting the quality of service of overall telecommunication systems. In: Ganchev, I., van der Mei, R.D., van den Berg, H. (eds.) Autonomous Control for a Reliable Internet of Services. LNCS, vol. 10768, pp. 151–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90415-3_7

    Chapter  Google Scholar 

  22. Sloan, I.H., Kachoyan, P.J.: SIAM J. Numer. Anal. 24, 116–128 (1987)

    Google Scholar 

  23. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  24. Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S., Mauntz, W.: Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliab. Eng. Syst. Saf. 92, 957–960 (2007)

    Article  Google Scholar 

  25. Wang, Y., Hickernell, F.J.: An historical overview of lattice point sets. In: Monte Carlo and Quasi-Monte Carlo Methods 2000, Proceedings of a Conference held at Hong Kong Baptist University, China (2000)

    Google Scholar 

  26. Zlatev, Z.: Computer Treatment of Large Air Pollution Models. KLUWER Academic Publishers, Dorsrecht-Boston-London (1995)

    Book  Google Scholar 

  27. Zlatev, Z., Dimov, I.T.: Computational and Numerical Challenges in Environmental Modelling. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  28. Fast component-by-component constructions. https://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/

Download references

Acknowledgement

Venelin Todorov is supported by the Bulgarian National Science Fund under Projects KP-06-N52/5 “Efficient methods for modeling, optimization and decision making” and KP-06-N62/6 “Machine learning through physics-informed neural networks”. The work is also supported by the Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venelin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Todorov, V., Dimov, I., Ostromsky, T., Apostolov, S., Dimitrov, Y., Zlatev, Z. (2023). Quasi-Monte Carlo Methods Based on Low Discrepancy Sequences for Sensitivity Analysis in Air Pollution Modelling. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2019. Studies in Computational Intelligence, vol 1111. Springer, Cham. https://doi.org/10.1007/978-3-031-42010-8_22

Download citation

Publish with us

Policies and ethics