Abstract
Instrumentation of an unmanned aerial vehicle (UAV) with devices for physical interaction with ground-based objects is a popular scientific branch in the domain of robotics. Physical interaction of an onboard aerial manipulation system with objects complicates the UAV stabilization process, what, in turn, impairs the positioning of UAV and reduces navigational accuracy of the moving end of the mechanism. In this paper, the problem of the manipulator motion control for an unmanned aerial vehicle is considered. We also propose algorithms for the calculation of the angles of joints of the manipulator, based on the solutions of the direct and inverse kinematics problems. The developed algorithms ensure retaining of the center of mass of an aerial manipulator system on the vertical axis and minimum displacement of the center of mass horizontally when moving the end mechanism along the reference trajectory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Danko, T.W., Oh, P.Y.: Design and control of a hyper-redundant manipulator for mobile manipulating unmanned aerial vehicles. J. Intell. Robot. Syst. 73, 709–723 (2014)
Kochetkov, M.P., Korolkov, D.N., Petrov, V.F., Petrov, O.V., Terentev, A.I., Simonov, S.B.: Application of cluster analysis with fuzzy logic elements for ground environment assessment of robotic group. SPIIRAS Proc. 19(4), 746–773 (2020). https://doi.org/10.15622/sp.2020.19.4.2
Medvedev, M.Y., Kostjukov, V.A., Pshikhopov V.X.: Method for optimizing of mobile robot trajectory in repeller sources field. Inform. Autom. 20(3), 690–726 (2021). https://doi.org/10.15622/ia.2021.3.7
Gardecki, S., Kasiński, A., Bondyra, A., Ga̧sior, P.: Multirotor aerial platform with manipulation system - static disturbances. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) ICA 2017. AISC, vol. 550, pp. 357–366. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54042-9_33
Suarez, A., Heredia, G., Ollero, A.: Compliant and lightweight anthropomorphic finger module for aerial manipulation and grasping. In: Robot 2015: Second Iberian Robotics Conference, vol. 417, pp. 543–555 (2015)
Valavanis, K., Vachtsevanos, J.: Handbook of Unmanned Aerial Vehicles. Springer, Netherlands (2015)
Pound, P., Bersak, D.R., Dollar, A.M.: Grasping from the air: hovering capture and load stability. In: IEEE International conference on robotics and automation, pp. 2491–2498 (2011)
Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3258–3264 (2009)
Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28, 914–931 (2011)
Graham, K.: Development of a quadrotor slung payload system. University of Toronto, Toronto. Master Thesis, no. 27541348 (2019)
Vargas, A., Ireland, M., Anderson D.: Swing free manoeuvre controller for RUAS slung-load system using ESN. In: 1 World Congress on Unmanned Systems Engineering. Oxford. (2014)
Sayyadi, H., Soltani, A.: Modeling and control for cooperative transport of a slung fluid container using quadrotors. Chin. J. Aeronaut. 31(2), 262–272 (2018)
Shirania, B., Najafib, M., Izadia, I.: Cooperative load transportation using multiple UAVs. Aerosp. Sci. Technol. 84, 158–169 (2019)
Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton Robot. 30, 73–86 (2011)
Aeroarms URL: www.aeroarms-project.eu
Lin, T., Li, Y., Qi, J., Meng, X.: Modeling and controller design of hydraulic rotorcraft aerial manipulator. In: 27th Chinese Control and Decision Conference (2015)
Shimahara, S., Leewiwatwong, S., Ladig, R., Shimonomura, K.: Aerial torsional manipulation employing multi-rotor flying robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1595–1600 (2016)
Sanchez-Cuevas, P.J., Heredia, G., Ollero, A.: Multirotor UAS for bridge inspection by contact using the ceiling effect. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 767–774 (2017).
Cacace, J., Finzi, A., Lippiello, V., Loianno, G., Sanzone, D.: Aerial service vehicles for industrial inspection: task decomposition and plan execution. Appl. Intell. 42(1), 49–62 (2014). https://doi.org/10.1007/s10489-014-0542-0
Kutia, J., Stol, K., Xu, W.: Aerial manipulator interactions with trees for canopy sampling. IEEE/ASME Trans. Mechatron. 23(4), 1740–1749 (2018)
Pope, M.T., Kimes, W.C., Jiang, H., Hawkes, E.W.: A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans. Robot. 33(1), 38–48 (2017)
Kim, S., Choi, S., Kim, H.J.: Aerial manipulation using a quadrotor with a two DOF robotic arm. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4990–4995 (2013)
Papachristos, P., Alexis, K., Tzes, A.: Efficient force exertion for aerial robotic manipulation: exploiting the thrust-vectoring authority of a tri-tiltrotor UAV. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4500–4505 (2014)
Arleo, G., Caccavale, F., Muscio, G., Pierri, F.: Control of quadrotor aerial vehicles equipped with a robotic arm. In: 21st Mediterranean Conference on Control and Automation, pp. 1174–1180 (2013)
Yang, H., Lee, D.: Dynamics and control of quadrotor with robotic manipulator. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5544–5549 (2014)
Jiang, G., Voyles, R.M.: Hexrotor UAV platform enabling dextrous aerial mobile manipulation. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (2014)
Heredia, G., Jimenez-Cano, A.E., Sanchez, I., Llorente, D.: Control of a multirotor outdoor aerial manipulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3417–3422 (2014)
Suarez, A., Soria, P.R, Heredia, G., Arrue, B.C.: Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 992–997 (2017)
Ryll, M., Bicego, D., Franchi, A.: Modeling and control of fast-hex: a fully–actuated by synchronized–tilting hexarotor. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1689–1694 (2016)
Theys, B., Dimitriadis, G., Hendrick, P., De Schutter, J.: Influence of propeller configuration on propulsion system efficiency of multi-rotor unmanned aerial vehicles. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 195–201 (2016)
Kuciński, T., et al.: Deployable manipulator technology with application for UAVs. In: Sąsiadek, J. (eds.) Aerospace Robotics II. GeoPlanet: Earth and Planetary Sciences, pp. 93–103. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13853-4_9
Kondak, K., Krieger, K., Albu-Schäeffer, A., Schwarzbach, M.: Closed-loop behavior of an autonomous helicopter equipped with a robotic arm. Int. J. Adv. Robot. Syst. 10(2), 145 (2013)
Bejar, M., Ollero, A., Kondak, K.: Helicopter based aerial manipulators. In: Ollero, A., Siciliano, B. (eds.) Aerial Robotic Manipulation. STAR, vol. 129, pp. 35–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12945-3_3
Huber, F., Kondak, K., Krieger, K., Sommer, D.: First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3452–3457 (2013)
Gentili, L., Naldi, R., Marconi, L.: Modeling and control of VTOL UAVs interacting with the environment. In: 2008 47th IEEE Conference on Decision and Control, pp. 1231–1236 (2008)
Marconi, L., Naldi, R.: Control of aerial robots: hybrid force and position feedback for a ducted fan. IEEE Control Syst. Mag. 32(4), 43–65 (2012)
Korpela, M., Danko, T.W., Oh P.Y.: Designing a system for mobile manipulation from an unmanned aerial vehicle. In: 2011 IEEE Conference on Technologies for Practical Robot Applications (2011)
Zhao, M., Kawasaki, K., Chen, X., Noda, S., Okada, K., Inaba, M.: Whole-body aerial manipulation by transformable multirotor with two-dimensional multilinks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5175–5182 (2017)
Nguyen, V., Saveliev, A., Ronzhin, A.: Mathematical modelling of control and simultaneous stabilization of 3-DOF aerial manipulation system. In: International Conference on Interactive Collaborative Robotics, pp. 253–264 (2020)
Lavrenov, L.O., Magid, E.A., Matsuno, F., Svinin, M.M., Suthakorn, J.: Development and implementation of spline-based path planning algorithm in ROS/Gazebo environment. SPIIRAS Proc. 18(1), 57–84 (2019). https://doi.org/10.15622/sp.18.1.57-84
Medvedev, M.Y., Kostjukov, V.A., Pshikhopov, V.X.: Method for optimizing of mobile robot trajectory in repeller sources field. Inform. Autom. 20(3), 690–726 (2021). https://doi.org/10.15622/ia.2021.3.7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nguyen, V., Ngo, T., Vu, Q., Ronzhin, A. (2021). Classification of Aerial Manipulation Systems and Algorithms for Controlling the Movement of Onboard Manipulator. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2021. Lecture Notes in Computer Science(), vol 12998. Springer, Cham. https://doi.org/10.1007/978-3-030-87725-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-87725-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87724-8
Online ISBN: 978-3-030-87725-5
eBook Packages: Computer ScienceComputer Science (R0)