Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Robust Nonlinear Control of Aerial Manipulators

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents single-layer robust nonlinear controllers for the unmanned aerial manipulator (UAM) trajectory tracking problem. The multi-body dynamical modeling of an underactuated UAM is conducted from the perspective of its end-effector using the Euler–Lagrange formalism. Accordingly, two single-layer nonlinear controllers are designed based on the classic \({\mathscr {H}}_{\infty }{}\) and the novel \({\mathscr {W}_{\infty }}{}\) control approaches for robust trajectory tracking of the UAM end-effector. The nonlinear \({\mathscr {H}}_{\infty }{}\) and \({\mathscr {W}_{\infty }}{}\) controllers are implemented in a hardware-in-the-loop framework using a simulator developed on Gazebo and ROS platforms, based on the computer-aided design model of the UAM. The performance of the controllers is evaluated when executing tasks such as object grasping, extension and retraction of the manipulator arm, hovering, and tracking a time-varying trajectory, while the UAM is affected by disturbances as ground effect, environment wind, and parametric and structural uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The ProVANT simulator software is available for download on https://github.com/Guiraffo/ProVANT-Simulator.

  2. For the sake of simplicity, throughout the manuscript, some function dependencies are omitted.

  3. A video recording of the experiments is available in https://youtu.be/qoQXryey3UM.

  4. MoveIt is a ROS application that provides several motion planning algorithms and other functionalities required by path planners such as collision detection (Coleman et al. 2014).

References

  • Acosta, J., de Cos, C. R., & Ollero, A. (2020). Accurate control of Aerial Manipulators outdoors. A reliable and self-coordinated nonlinear approach. Aerospace Science and Technology, 99, 1–14.

    Article  Google Scholar 

  • Acosta, J.A., Sanchez, M.I., & Ollero, A. (2014). Robust control of underactuated Aerial Manipulators via IDA-PBC. In: IEEE Conference on Decision and Control, IEEE, pp 673–678

  • Aliyu, M. D. S., & Boukas, E. K. (2011). Extending nonlinear \({\mathscr {H}}_{2}\), \({\mathscr {H}}_{\infty }\) optimisation to \({\mathscr {W}}_{1,2}\), \({\mathscr {W}}_{1,\infty }\) spaces-part i: Optimal control. Intern J Syst Sci, 42(5), 889–906.

    Article  MATH  Google Scholar 

  • Ballesteros-Escamilla, M. F., Cruz-Ortiz, D., Chairez, I., & Luviano-Juárez, A. (2019). Adaptive output control of a mobile manipulator hanging from a quadcopter unmanned vehicle. ISA Transactions, 94, 200–217.

    Article  Google Scholar 

  • Cardoso, D.N., Esteban, S., & Raffo, G.V. (2018). Nonlinear \({\mathscr {H}}_{2}\) and \({\mathscr {H}}_{\infty }\) control formulated in the weighted sobolev space for underactuated mechanical systems with input coupling. In: 2018 IEEE Conference on Decision and Control (CDC), IEEE, pp 3812–3817

  • Cardoso, D. N., Esteban, S., & Raffo, G. V. (2021). A robust optimal control approach in the weighted Sobolev space for underactuated mechanical systems. Automatica, 125, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaikalis, D., Khorrami, F., & Tzes, A. (2020). Adaptive Control Approaches for an Unmanned Aerial Manipulation System. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020 pp 498–503

  • Chilali, M., & Gahinet, P. (1996). \({\mathscr {H}}_\infty \) design with pole placement constraints: an LMI approach. IEEE Transactions on automatic control, 41(3), 358–367.

    Article  MathSciNet  MATH  Google Scholar 

  • Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., & Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations. Cambridge: MIT Press.

  • Coelho, A., Singh, H., Kondak, K., & Ott, C. (2020). Whole-Body Bilateral Teleoperation of a Redundant Aerial Manipulator. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 9150–9156

  • Coleman, D., Sucan, I., Chitta, S., & Correll, N. (2014). Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study. Journal of Software Engineering for Robotics, 1(1), 1–14.

    Google Scholar 

  • Heredia, G., Jimenez-Cano, A.E., Sanchez, I., Llorente, D., Vega, V., Braga, J., Acosta, J.A., & Ollero, A. (2014). Control of a multirotor outdoor aerial manipulator. In: IEEE International Conference on Intelligent Robots and Systems, IEEE, pp 3417–3422

  • Hoerner, S. F. (1965). Fluid-dynamic drag - Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. Cambridge University Press.

  • Jazar, R. N. (2010). Theory of Applied Robotics (2nd ed.). Boston, MA: Springer.

    Book  MATH  Google Scholar 

  • Jimenez-Cano, A.E., Martin, J., Heredia, G., Ollero, A., & Cano, R. (2013). Control of an aerial robot with multi-link arm for assembly tasks. In: IEEE International Conference on Robotics and Automation, IEEE, pp 4916–4921

  • Kirk, D.E. (2012). Optimal control theory: an introduction. Courier Corporation

  • Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. IEEE International Conference on Intelligent Robots and Systems, 3, 2149–2154.

    Google Scholar 

  • Lara, A.V., Nascimento, I.B.P., Arias-Garcia, J., Becker, L.B., & Raffo, G.V. (2018). Hardware in The Loop Simulation Environment for Testing of Tilt-Rotor UAVs Control Strategies. In: Congresso Brasileiro de Automática - CBA, Sociedade Brasileira de Automática, pp 1–7

  • Mello, L. S., Raffo, G. V., & Adorno, B. V. (2016). Robust whole-body control of an unmanned aerial manipulator. European Control Conference (pp. 702–707). Aalborg: IEEE.

  • Morais, J.E., Cardoso, D.N., & Raffo, G.V. (2020). Robust optimal nonlinear control strategies for an aerial manipulator. In: Congresso Brasileiro de Automática - CBA, Sociedade Brasileira de Automática, pp 1–8

  • Nava, G., Sablé, Q., Tognon, M., Pucci, D., & Franchi, A. (2020). Direct Force Feedback Control and Online Multi-Task Optimization for Aerial Manipulators. IEEE Robotics and Automation Letters, 5(2), 331–338.

    Article  Google Scholar 

  • Ollero, A., & Siciliano, B. (Eds.). (2019). Aerial Robotic Manipulation. Cham: Springer.

  • Orsag, M., Korpela, C. M., Oh, P., & Bogdan, S. (2018). Aerial Manipulation. Springer.

  • Raffo, G. V., Ortega, M. G., & Rubio, F. R. (2011). Nonlinear \({\mathscr {H}}_{\infty }\) controller for the quad-rotor helicopter with input coupling. IFAC Proceedings Volumes, 44, 13834–13839.

    Article  Google Scholar 

  • Raffo, G. V., Ortega, M. G., Madero, V., & Rubio, F. R. (2015). Two-wheeled self-balanced pendulum workspace improvement via underactuated robust nonlinear control. Control Engineering Practice, 44, 231–242.

    Article  Google Scholar 

  • Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., & Franchi, A. (2017). 6D physical interaction with a fully actuated aerial robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 5190–5195

  • Sanchez-Cuevas, P., Heredia, G., & Ollero, A. (2017). Characterization of the aerodynamic ground effect and its influence in multirotor control. International Journal of Aerospace Engineering, 2017, 1–17.

  • Shabana, A. A. (2013). Dynamics of multibody systems. Cambridge University Press. https://doi.org/10.1017/CBO9781107337213

  • Siqueira, A. A., & Terra, M. H. (2004). Nonlinear \({\mathscr {H}}_\infty \) control for underactuated manipulators with robustness tests. Revista Controle & Automação, 15(3), 339–350.

    Article  Google Scholar 

  • Slightam, J.E., Mcarthur, D.R., Spencer, S.J., & Buerger, S.P. (2021). Passivity analysis of quadrotor aircraft for physical interactions. In: 2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)

  • Smrcka, D., Baca, T., Nascimento, T., & Saska, M. (2021). Admittance Force-Based UAV-Wall Stabilization and Press Exertion for Documentation and Inspection of Historical Buildings. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, pp 552–559

  • Suarez, A., Vega, V. M., Fernandez, M., Heredia, G., & Ollero, A. (2020). Benchmarks for Aerial Manipulation. IEEE Robotics and Automation Letters, 5(2), 2650–2657.

    Article  Google Scholar 

  • van der Schaft, A. (2000). L2-Gain and Passivity Techniques in Nonlinear Control (2nd ed.). London: Springer.

    Book  MATH  Google Scholar 

  • Zhang, X., Liao, H., Du, X., & Xu, B. (2018). A Fast Hybrid Noise Filtering Algorithm Based on Median-Mean. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), IEEE, pp 2120–2125

Download references

Acknowledgements

An early version of this paper (Morais et al. 2020) was presented at the XXIII Congresso Brasileiro de Automática (CBA 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júnio E. de Morais.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was in part supported by the project INCT (National Institute of Science and Technology) under the Grant CNPq (Brazilian National Research Council) 465755/2014-3, FAPESP (São Paulo Research Foundation), Brazil 2014/50851-0. This work was also supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (Finance Code 88887.136349/2017-00, and 001), CNPq, Brazil (Grant numbers 315695/2020-0 and 426392/2016-7), and FAPEMIG, Brazil (Grant number APQ-03090-17)

Nonlinear \({\mathscr {H}}_{\infty }{}\) Control Matrices

Nonlinear \({\mathscr {H}}_{\infty }{}\) Control Matrices

As in Raffo et al. (2011), the matrices \({\varvec{{K}}}_{D}\), \({\varvec{{K}}}_{P}\) and \({\varvec{{K}}}_{I}\) in (31) are given by

$$\begin{aligned} \begin{aligned} {\varvec{{K}}}_{D}&= \begin{bmatrix} {\varvec{{K}}}_{D_{ss}} &{} {\varvec{{K}}}_{D_{sc}}\\ {\varvec{{K}}}_{D_{cs}} &{} {\varvec{{K}}}_{D_{cc}} \end{bmatrix},&{\varvec{{K}}}_{P}&= \begin{bmatrix} {\mathbb {O}}{} &{} {\varvec{{K}}}_{P_{sc}}\\ {\mathbb {O}}{} &{} {\varvec{{K}}}_{P_{cc}} \end{bmatrix}, \\ {\varvec{{K}}}_{I}&= \begin{bmatrix} {\mathbb {O}}{} &{} {\varvec{{K}}}_{I_{sc}}\\ {\mathbb {O}}{} &{} {\varvec{{K}}}_{I_{cc}} \end{bmatrix}, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} {\varvec{{K}}}_{D_{ss}}&= {\varvec{{M}}}_{or}^{-1}\left( {\varvec{{C}}}_{or} + \frac{1}{\omega _{us}^{2}} {\mathbbm {1}}{} \right) ,\\ {\varvec{{K}}}_{D_{sc}}&= {\varvec{{M}}}_{or}^{-1}\left( {\varvec{{C}}}_{oc} - {\varvec{{M}}}_{sc}{\varvec{{M}}}_{cc}^{-1} \frac{1}{\omega _{uc}^{2}} \right) \\&\quad \times \frac{\omega _{uc} \omega _{1c}}{\sqrt{\gamma ^{2} - \omega _{uc}^{2}}} \frac{\sqrt{\gamma ^{2} - \omega _{us}^{2}}}{\omega _{us} \omega _{1s}},\\ {\varvec{{K}}}_{P_{sc}}&= {\varvec{{M}}}_{or}^{-1}\left( {\varvec{{C}}}_{oc} - {\varvec{{M}}}_{sc}{\varvec{{M}}}_{cc}^{-1} \frac{1}{\omega _{uc}^{2}} \right) \\&\quad \times \frac{\omega _{uc} \sqrt{\omega _{2c}^{2} + 2 \omega _{1c}\omega _{3c}}}{\sqrt{\gamma ^{2} - \omega _{uc}^{2}}} \frac{\sqrt{\gamma ^{2} - \omega _{us}^{2}}}{\omega _{us} \omega _{1s}},\\ {\varvec{{K}}}_{I_{sc}}&= {\varvec{{M}}}_{or}^{-1}\left( {\varvec{{C}}}_{oc} - {\varvec{{M}}}_{sc}{\varvec{{M}}}_{cc}^{-1} \frac{1}{\omega _{uc}^{2}} \right) \frac{\omega _{uc} \omega _{3c}}{\sqrt{\gamma ^{2} - \omega _{uc}^{2}}} \frac{\sqrt{\gamma ^{2} - \omega _{us}^{2}}}{\omega _{us} \omega _{1s}},\\ {\varvec{{K}}}_{D_{cs}}&= {\varvec{{M}}}_{ic}^{-1}\left( {\varvec{{C}}}_{ir} - {\varvec{{M}}}_{cs}{\varvec{{M}}}_{ss}^{-1} \frac{1}{\omega _{us}^{2}} \right) \frac{\omega _{us} \omega _{1s}}{\sqrt{\gamma ^{2} - \omega _{us}^{2}}} \frac{\sqrt{\gamma ^{2} - \omega _{uc}^{2}}}{\omega _{uc} \omega _{1c}},\\ {\varvec{{K}}}_{D_{cc}}&= \frac{\sqrt{\omega _{2c}^{2} + 2 \omega _{1c}\omega _{3c}}}{\omega _{1s}} {\mathbbm {1}}{} + {\varvec{{M}}}_{ic}^{-1} \left( {\varvec{{C}}}_{ic} + \frac{1}{\omega _{uc}^{2}}{\mathbbm {1}}{} \right) ,\\ {\varvec{{K}}}_{P_{cc}}&= \frac{\sqrt{\omega _{2c}^{2} + 2 \omega _{1c}\omega _{3c}}}{\omega _{1s}} {\varvec{{M}}}_{ic}^{-1} \left( {\varvec{{C}}}_{ic} + \frac{1}{\omega _{uc}^{2}}{\mathbbm {1}}{} \right) + \frac{\omega _{3c}}{\omega _{1s}}{\mathbbm {1}}{},\\ {\varvec{{K}}}_{I_{cc}}&= {\varvec{{M}}}_{ic}^{-1} \left( {\varvec{{C}}}_{ic} + \frac{1}{\omega _{uc}^{2}}{\mathbbm {1}}{} \right) \frac{\omega _{3c}}{\omega _{1s}}, \end{aligned}$$

in which it is considered the particular case where \({\varvec{{Q}}} = {{\,\mathrm{blkdiag}\,}}(\omega ^{2}_{1s}{\mathbbm {1}}{},\) \(\omega ^{2}_{1c}{\mathbbm {1}}{},\) \(\omega ^{2}_{2c}{\mathbbm {1}}{}\), \(\omega ^{2}_{3c}{\mathbbm {1}}{})\), \({\varvec{{R}}} = {{\,\mathrm{blkdiag}\,}}(\omega ^{2}_{ur}{\mathbbm {1}}{},\) \(\omega ^{2}_{uc}{\mathbbm {1}}{}),\) and \({\varvec{{S}}} = {\mathbb {O}}\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Morais, J.E., Cardoso, D.N. & Raffo, G.V. Robust Nonlinear Control of Aerial Manipulators. J Control Autom Electr Syst 34, 1–17 (2023). https://doi.org/10.1007/s40313-022-00944-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-022-00944-9

Keywords

Navigation