Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reference-Relation Guided Autoencoder with Deep CCA Restriction for Awake-to-Sleep Brain Functional Connectome Prediction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

The difficulty of acquiring resting-state fMRI of early developing children under the same condition leads to a dedicated protocol, i.e., scanning younger infants during sleep and older children during being awake, respectively. However, the obviously different brain activities of sleep and awake states arouse a new challenge of awake-to-sleep connectome prediction/translation, which remains unexplored despite its importance in the longitudinally-consistent delineation of brain functional development. Due to the data scarcity and huge differences between natural images and geometric data (e.g., brain connectome), existing methods tailored for image translation generally fail in predicting functional connectome from awake to sleep. To fill this critical gap, we unprecedentedly propose a novel reference-relation guided autoencoder with deep CCA restriction (R2AE-dCCA) for awake-to-sleep connectome prediction. Specifically, 1) A reference-autoencoder (RAE) is proposed to realize a guided generation from the source domain to the target domain. The limited paired data are thus greatly augmented by including the combinations of all the age-restricted neighboring subjects as the references, while the target-specific pattern is fully learned; 2) A relation network is then designed and embedded into RAE, which utilizes the similarity in the source domain to determine the belief-strength of the reference during prediction; 3) To ensure that the learned relation in the source domain can effectively guide the generation in the target domain, a deep CCA restriction is further employed to maintain the neighboring relation during translation; 4) New validation metrics dedicated for connectome prediction are also proposed. Experimental results showed that our proposed R2AE-dCCA produces better prediction accuracy and well maintains the modular structure of brain functional connectome in comparison with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lyall, A.E., et al.: Dynamic development of regional cortical thickness and surface area in early childhood. Cereb. Cortex 25(8), 2204–2212 (2015)

    Article  Google Scholar 

  2. Gilmore, J.H., et al.: Longitudinal development of cortical and subcortical gray matter from birth to 2 years’. Cereb. Cortex 22(11), 2478–2485 (2012)

    Article  Google Scholar 

  3. Li, G., et al.: Cortical thickness and surface area in neonates at high risk for schizophrenia. Brain Struct. Funct. 221(1), 447–461 (2016). https://doi.org/10.1007/s00429-014-0917-3

    Article  Google Scholar 

  4. Zhang, H., Shen, D., Lin, W.: Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts. Neuroimage 185, 664–684 (2019)

    Article  Google Scholar 

  5. Cao, M., Huang, H., He, Y.: Developmental connectomics from infancy through early childhood. Trends Neurosci. 40(8), 494–506 (2017)

    Article  Google Scholar 

  6. Howell, B.R., et al.: The UNC/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development. Neuroimage 185, 891–905 (2019)

    Article  Google Scholar 

  7. Alotaibi, A.: Deep generative adversarial networks for image-to-image translation: a review. Symmetry 12(10), 1705 (2020)

    Article  Google Scholar 

  8. Armanious, K., et al.: MedGAN: medical image translation using GANs. Comput. Med. Imaging Graph. 79, 101684 (2020)

    Google Scholar 

  9. Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  10. Zhu, M., Rekik, I.: Multi-view brain network prediction from a source view using sample selection via CCA-based multi-kernel connectomic manifold learning. In: Rekik, I., Unal, G., Adeli, E., Park, S.H. (eds.) PRIME 2018. LNCS, vol. 11121, pp. 94–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00320-3_12

    Chapter  Google Scholar 

  11. Bessadok, A., Mahjoub, M.A., Rekik, I.: Brain graph synthesis by dual adversarial domain alignment and target graph prediction from a source graph. Med. Image Anal. 68, 101902 (2021)

    Google Scholar 

  12. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: International Conference on Learning (2015)

    Google Scholar 

  13. Van den Heuvel, M.P., de Lange, S.C., Zalesky, A., Seguin, C., Yeo, B.T., Schmidt, R.: Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. Neuroimage 152, 437–449 (2017)

    Article  Google Scholar 

  14. Garrison, K.A., Scheinost, D., Finn, E.S., Shen, X., Constable, R.T.: The (in)stability of functional brain network measures across thresholds. Neuroimage 118, 651–661 (2015)

    Article  Google Scholar 

  15. Wen, X., Wang, R., Yin, W., Lin, W., Zhang, H., Shen, D.: Development of dynamic functional architecture during early infancy. Cereb. Cortex 30(11), 5626–5638 (2020)

    Article  Google Scholar 

  16. Meunier, D., Achard, S., Morcom, A., Bullmore, E.: Age-related changes in modular organization of human brain functional networks. Neuroimage 44(3), 715–723 (2009)

    Article  Google Scholar 

  17. Meilă, M.: Comparing clusterings-an information based distance. J. Multivar. Anal. 98(5), 873–895 (2007)

    Article  MathSciNet  Google Scholar 

  18. Venkataraman, A., Van Dijk, K.R., Buckner, R.L., Golland, P.: Exploring functional connectivity in fMRI via clustering. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 441–444 (2009)

    Google Scholar 

  19. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  20. Tavor, I., Jones, O.P., Mars, R.B., Smith, S., Behrens, T., Jbabdi, S.: Task-free MRI predicts individual differences in brain activity during task performance. Science 352(6282), 216–220 (2016)

    Article  Google Scholar 

  21. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14(4), 414–416 (2017)

    Article  Google Scholar 

  22. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  23. Li, G., Wang, L., Yap, P.-T., et al.: Computational neuroanatomy of baby brains: a review. Neuroimage 185, 906–925 (2019)

    Article  Google Scholar 

  24. Wang, L., et al.: Volume-based analysis of 6-month-old infant brain MRI for autism biomarker identification and early diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 411–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_47

    Chapter  Google Scholar 

  25. Li, G., Wang, L., Shi, F., Gilmore, J.H., Lin, W., Shen, D.: Construction of 4D high-definition cortical surface atlases of infants: methods and applications. Med. Image Anal. 25(1), 22–36 (2015)

    Article  Google Scholar 

  26. Li, G., Wang, L., Shi, F., Lin, W., Shen, D.: Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Med. Image Anal. 18(8), 1274–1289 (2014)

    Article  Google Scholar 

  27. Yin, W., et al.: The emergence of a functionally flexible brain during early infancy. Proc. Natl. Acad. Sci. 117(38), 23904–23913 (2020)

    Article  Google Scholar 

  28. Hu, D., Zhang, H., Wu, Z., Wang, et al.: Disentangled-multimodal adversarial autoencoder: application to infant age prediction with incomplete multimodal neuroimages. IEEE Trans. Med. Imaging 39(12), 4137–4149 (2020)

    Google Scholar 

  29. Hu, D., et al.: Disentangled intensive triplet autoencoder for infant functional connectome fingerprinting. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 72–82. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_8

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grants (MH127544, MH116225, MH117943, MH109773, and MH123202). This work also utilizes approaches developed by an NIH grant(1U01MH110274) and the efforts of the UNC/UMN Baby Connectome Project Consortium.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Gang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, D. et al. (2021). Reference-Relation Guided Autoencoder with Deep CCA Restriction for Awake-to-Sleep Brain Functional Connectome Prediction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics