Nothing Special   »   [go: up one dir, main page]

Skip to main content

Acyclic, Star, and Injective Colouring: Bounding the Diameter

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Abstract

We examine the effect of bounding the diameter for well-studied variants of the Colouring problem. A colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring. The last problem is also known as L (1, 1)-Labelling and we also consider the framework of L (a b)-Labelling. We prove a number of (almost-)complete complexity classifications, in particular, for Acyclic 3-Colouring, Star 3-Colouring and L (1, 2)-Labelling.

Daniël Paulusma—Supported by the Leverhulme Trust (RPG-2016-258).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring with no 2-colored \({P}_4\)’s. Electron. J. Combinat. 11, R26 (2004)

    Article  MATH  Google Scholar 

  2. Bodirsky, M., Kára, J., Martin, B.: The complexity of surjective homomorphism problems - a survey. Discrete Appl. Math. 160, 1680–1690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for lambda-colorings of graphs. Comput. J. 47, 193–204 (2004)

    Article  MATH  Google Scholar 

  4. Bok, J., Jedlicková, N., Martin, B., Paulusma, D., Smith, S.: Acyclic, star and injective colouring: a complexity picture for \({H}\)-free graphs. In: Proceedings ESA 2020, LIPIcs 173, 22:1–22:22 (2020)

    Google Scholar 

  5. Bok, J., Jedličková, N., Martin, B., Paulusma, D., Smith, S.: Injective colouring for H-free graphs. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 18–30. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_2

    Chapter  Google Scholar 

  6. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Independent feedback vertex sets for graphs of bounded diameter. Inf. Process. Lett. 131, 26–32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brause, C., Golovach, P.A., Martin, B., Ochem, P., Paulusma D., Smith S.: Acyclic, star and injective colouring: bounding the diameter, Manuscript. arXiv:2104.10593 (2021)

  8. Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity results on coloring \(P_k\)-free graphs. Eur. J. Combinat. 34(3), 609–619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calamoneri, T.: The \({L}(h, k)\)-labelling problem: an updated survey and annotated bibliography. Comput. J. 54, 1344–1371 (2011)

    Article  Google Scholar 

  10. Edwards, K.: The complexity of colouring problems on dense graphs. TCS 43, 337–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5, 586–595 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hahn, G., Kratochvíl, J., Širáň, J., Sotteau, D.: On the injective chromatic number of graphs. Discrete Math. 256, 179–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hell, P., Raspaud, A., Stacho, J.: On injective colourings of chordal graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 520–530. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_45

    Chapter  Google Scholar 

  14. Jin, J., Xu, B., Zhang, X.: On the complexity of injective colorings and its generalizations. Theoret. Comput. Sci. 491, 119–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karthick, T.: Star coloring of certain graph classes. Graphs Combinat. 34, 109–128 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martin, B., Paulusma, D., Smith, S.: Colouring graphs of bounded diameter in the absence of small cycles. In: Calamoneri, T., Corò, F. (eds.) CIAC 2021. LNCS, vol. 12701, pp. 367–380. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75242-2_26

    Chapter  Google Scholar 

  17. Martin, B., Paulusma, D., Smith, S.: Colouring \({H}\)-free graphs of bounded diameter. In: Proceedings MFCS 2019, LIPIcs 138, 14:1–14:14 (2019)

    Google Scholar 

  18. Mertzios, G.B., Spirakis, P.G.: Algorithms and almost tight results for 3-Colorability of small diameter graphs. Algorithmica 74, 385–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paulusma, D.: Open problems on graph coloring for special graph classes. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 16–30. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_2

    Chapter  Google Scholar 

  20. Shalu, M.A., Antony, C.: Complexity of restricted variant of star colouring. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 3–14. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_1

    Chapter  Google Scholar 

  21. Yang, A., Yuan, J.: Partition the vertices of a graph into one independent set and one acyclic set. Discrete Math. 306, 1207–1216 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniël Paulusma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brause, C., Golovach, P., Martin, B., Paulusma, D., Smith, S. (2021). Acyclic, Star, and Injective Colouring: Bounding the Diameter. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics